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Abstract: We reviewed some recent ideas to improve the efficiency and power output of thermo-
electric nano-devices. We focused on two essentially independent aspects: (i) increasing the charge
current by taking advantage of an interplay between the material and the thermodynamic parame-
ters, which is only available in the non-linear regime; and (ii) decreasing the heat current by using
nanowires with surface disorder, which helps excite localized phonons at random positions that can
strongly scatter the propagating phonons carrying the thermal current.
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1. Introduction

Thermoelectric devices can convert unused waste heat into electricity or use electricity
for refrigeration [1]. The idea is very simple. Suppose the two ends of a wire are kept at
two different but fixed temperatures. The hot end with temperature TH has typically a
higher density of more energetic electrons compared to the cold end kept at temperature
TC, so they diffuse from the hot end to the cold end, until charge imbalance stops the flow.
This results in a chemical potential of the cold end µC larger than the chemical potential
of the hot end µH . This difference can be used, e.g., to light a bulb (a ‘load’), as shown in
Figure 1.

Figure 1. Cartoon of a thermoelectric device.

1.1. Electrical vs. Thermal Current

The efficiency of such a device depends on how much electrical current is generated,
given the heat current from the hot reservoir that measures the input energy. A good
thermoelectric material needs to have a large electrical conductivity σ (an “electron metal”)
and at the same time, a poor thermal conductivity κ (a “phonon glass”). While significant
progress has been made in recent years in improving thermoelectric figure of merit [2],
typical bulk materials with large σ (good metals) turn out to be inherently inefficient [3,4].
This is because the ratio of the two conductivities at a given temperature, κ/σT where T
is the temperature, is a fixed number (known as the Lorentz number) independent of the
material properties given by the Wiedemann–Franz law [5]:
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π2k2
B

3e2 (1)

where kB is the Boltzmann constant and e is the electric charge. As a result, it has not yet
been possible to find bulk thermoelectric materials efficient enough to be cost effective
except in specialized applications such as space travel. Since the Wiedemann–Franz law
is a consequence of the Fermi-liquid theory, attempts have been made to beat the law by
looking for non-Fermi-liquid states of matter. While possible in principle [6,7], such exotic
states in the bulk are typically not very useful in practical devices. On the other hand,
it seems possible to control σ and κ independently in nano-engineered low-dimensional
materials, boosting the efficiency [8–16]. A typical nano-device consists of two large leads
at different temperatures connected by a quantum dot [17–21], a molecule [22–27], or a
nanowire [28–34]. Naturally, the power output of such a nano-device is also going to be
small. In order to be practically useful, an important question is whether such a nano-device
can be scaled up to generate a large enough power output.

1.2. Linear Response Regime

In general, the number current IN across a given thermoelectric material connected to
two leads depends on the energy-dependent transmission function τ(E) of the material:

IN =
1
h

∫
dE τ(E)F(E). (2)

Here, the function F(E) is defined as

F(E) ≡ fH(E)− fC(E), f j(E) =
1

e(E−µj)/kBTj + 1
(3)

where f j(E) is the Fermi function of the lead j = H, C, using notations from Figure 1.
In the linear response regime where ∆T ≡ TH − TC and ∆µ ≡ µC − µH are assumed to be
infinitesimally small, the difference of Fermi-functions F(E) can be expanded as

F(E) ≈ −
∂ f (E− µeq)

∂E

[
∆µ + (E− µeq)

∆T
T

]
. (4)

Then, the number current becomes

IN = ∆µL0 +
∆T
T

L1; Ln ≡
∫

dE (E− µeq)
nτ(E)

−∂ f
∂E

(5)

where L0 = σ is the conductivity and L1/T = Se is the Seebeck coefficient. The derivative
of the Fermi-function (which, at low temperatures, is nearly a delta-function at E = EF
where EF is the Fermi-energy) means that material properties near the Fermi energy, such
as the conductivity and the Seebeck coefficient, determine the number current in the linear
response regime. In terms of these properties, the effectiveness of a thermoelectric material
is usually estimated by its thermoelectric Figure of Merit:

ZT =
S2

e Tσ

κ
, (6)

where the thermal conductivity κ contains contributions from electrons as well as phonons.
Currently, the best available devices have ZT ∼ 1, while it is estimated that ZT > 3

would be industrially competitive. Since the Figure of Merit shown by (6) solely depends
on the properties of the material connecting the leads, it is natural that most work in this
area has been focused on designing (or nano-engineering) a good thermoelectric material,
an “electron-metal, phonon-glass”, exploiting complex structures [35,36]. There are also
clever ways to increase the efficiency by considering multi-terminal systems [26]. In this
review, we will not consider the progress made in these areas. Instead, we will focus
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on two recent ideas to improve the efficiency and power output of thermoelectric nano-
devices: one is to take advantage of the non-linear regime, with a particular focus on being
able to tune the device for better efficiency. It turns out that the efficiency depends not
only on the material parameters, but also crucially on the thermodynamic parameters
of the leads as well as the characteristics of the loads. This opens novel possibilities to
improve the efficiency of a thermoelectric device by exploiting the interplay between the
material and the thermodynamic parameters of the device. The other idea is to exploit
the observation that surface disorder in nanowires favors excitation of resonances and the
eventual localization of phonons across the wire when a propagating phonon is introduced.
This offers the possibility that the thermal current can be decreased by a significant amount
if the heat-carrying propagating phonons become strongly scattered by the localized
phonons in such a surface-disordered nanowire.

2. Non-Linear Regime

The linear-response regime is valid when the temperature and the chemical potential
difference between the two leads are small. On the other hand, in practically useful systems,
the temperature as well as the chemical potential difference between the leads are not
necessarily small, and non-linearity becomes important. Several recent work addresses the
effects of non-linearity in thermoelectric devices [21,34,37–40]. We will not review these
efforts here. Instead, we will focus on a general framework that allows exploiting the
non-linearity to increase the efficiency and power output of a thermoelectric device.

In Figure 1, the device takes heat QH from the hot reservoir kept at temperature
TH , does work W, and releases heat QC to the cold reservoir kept at a temperature TC.
The efficiency is defined as the ratio of work done to the heat extracted from the high
temperature reservoir:

η =
W
QL

= 1− QC
QH

(7)

where the latter follows from the conservation of energy. An ideal engine would have the
maximum efficiency, called the Carnot efficiency, defined as

ηc = 1− TC
TH

, (8)

which occurs when the system is reversible. For a typical application, such as using the
waste heat from a hot car engine, TH ≈ 450 K and TC ≈ 300 K, which is roughly the room
temperature. In this case, ηc ≈ 1/3. It will be useful to keep this in mind when designing a
device for a given application.

The estimate of ZT > 3 for industrial competitiveness mentioned above translates
to [41]:

η

ηc
> 0.3. (9)

The goal is then to design a device with η/ηc > 0.3, with some given ηc.

2.1. Power Output and Efficiency

The power output in the general non-linear regime is the product of the charge current
times that the voltage drops across the device. In our notation of Figure 1, it is given by

P = (µC − µH)IN (10)

where IN is the number current defined in (2). In this notation, the efficiency is:

η =
(µC − µH)

∫
dE τ(E)F(E)∫

dE (E− µC)τ(E)F(E)
. (11)



Appl. Nano 2021, 2 165

Interestingly, there have been several proposals for devices with Carnot
efficiency [42–45]. However, the power output from such systems is zero, since they
are reversible. Such systems are of course useless as practical devices. It is therefore
important to simultaneously consider the efficiency and the power output in any proposed
device [41,46–48]. Whitney [46] has shown that the maximum efficiency for a given power
output occurs when the energy dependent transmission through the system is a square
wave, with appropriate position and width.

2.2. Interplay of Material and Thermodynamic Parameters

For simplicity, Figure 2 considers an ideal square-wave transmission function τ(E)
as an example. Note that this is a fixed property of a given material. At the same time,
Figure 2 shows the general form of F(E), the difference in Fermi functions, which is entirely
determined by the thermodynamic parameters of the system. It has a negative and a
positive part, the zero of the function being at:

Ê =
µcTH − µHTC

TH − TC
; F(Ê) = 0. (12)

[Note: rewriting as TC/TH = (µC − Ê)/(µH − Ê), it is clear that for a given TH and TC
with 0 < TC < TH , both chemical potentials must lie on the same side of the parameter Ê,
satisfying the inequalities Ê ≥ µC ≥ µH (case I) or µH ≥ µC ≥ Ê (case II). For definiteness,
and without loss of generality, we will only consider case I].

Figure 2. Optimizing transmission function τ(E) in the nonlinear regime. Difference of the Fermi
functions F(E) = fH(E)− fC(E) (solid black curve) with TH = 0.5, µH = 1.0, µC = 1.68, and Ê = 1.7
and two identical width square-wave transmission functions τ(E), one (blue) starting at energy
EB

0 < Ê and a second one (red) starting at ER
0 = Ê [41].

The general form of F(E) and an ideal square-wave transmission function τ(E) shown
in Figure 2 provide valuable insights into the ways to optimize both efficiency and power.
It is clear from Figure 2 and Equations (10) and (11) that the efficiency or power output of a
thermoelectric device in this non-linear regime does not depend on the material property
τ(E) alone; they also depend very crucially on the position of the crossover energy Ê
where F(E) changes sign, which is entirely determined by the thermodynamic parameters TH ,
µH , TC, and µC. To illustrate the interplay between the material and the thermodynamic
parameters, consider two identically shaped transmission functions, shown in red and
blue in Figure 2, but with different onset energies E0, with EB

0 < Ê (blue) and ER
0 ≥ Ê (red).

Clearly for EB
0 < Ê, part of the contribution to the integral

∫
τ(E)F(E)dE determining
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the number current (10) from the positive part of F(E) is going to be canceled by the
contribution from the negative part of F(E), leading to a small number current, which can
be as small as zero—even with an ideal square-wave transmission function (negative values
simply mean a current in the opposite direction, so the same argument applies in that case
too). On the other hand, for ER

0 = Ê, the contribution to the number current from all energy
where τ(E) is non-zero is going to add up, leading to a much larger number current. Thus,
for a given τ(E), it is extremely important to be able to tune the parameter Ê (or vice versa),
in order to be able to maximize the number current. Together with the facts that (i) Carnot
efficiency is necessarily associated with zero power output; and (ii) the power output from
any nano-device is going to be too small to be practically useful, the above insight suggests
the following design criteria for a good thermoelectric nano-device, irrespective of the
material [41]:

1. It should have a tunable phenomenon leading to a negligible value for τ(E) in the
range of E dictated by F(E);

2. Any design has to optimize the power output and the efficiency simultaneously,
as opposed to maximizing one or the other;

3. Any nano-device should be scalable, with the number current increasing with the
number of channels.

2.3. Nanowires

The above discussions are valid irrespective of whether the device itself is a quan-
tum dot, a large molecule or a wire. For example, a molecular system known as a t-
stub can exploit the interference effects from two possible paths to tune the transmission
function [41,49]. On the other hand, given the available technology, it is easy to fabricate
nanowires, and for practical purposes, a device based on nanowires seems more desirable.
In particular, as we will see later, silicon nanowires with a surface disorder can have very
low thermal conductivity, which is a requirement for a good thermoelectric device. Thus,
we will focus our review on nanowires only.

A proposal from Ref. [50] provides a sketch for a tunable thermoelectric device based
on nanowires. The proposal assumes that the lower impurity band edge EL

0 of a semicon-
ducting nanowire can be modified within a reasonable range by applying a gate voltage
Vg. Given EL

0 , only electrons with energy E ≥ EL
0 will be in the allowed band, and the

resulting transmission function will be zero for all E < EL
0 . In the absence of the gate

voltage, when the wire is connected to the leads and the load, the lower band edge will, in
general, be different from Ê determined by the thermodynamic parameters of the system.
By applying a tunable gate voltage, it should now be possible to align EL

0 (Vg) = Ê precisely,
thus maximizing the number current. The tuning allows for optimizing power output and
efficiency simultaneously.

Figure 3, reprinted from [50], shows the transmission function τ(E) of a weakly
disordered wire (localization length ten times larger than the length of the wire) obtained
from an exactly solvable model of a one-dimensional wire with N sites described by a
standard tight-binding model and a Lorentzian disorder:

H = −t
N−1

∑
i=1

(c†
i ci+1 + h.c.) +

N

∑
i=1

εic†
i ci; P(εi) =

1
π

W
ε2

i + W2
, (13)

where t is the hopping element and W is the strength of disorder. All energies are measured
in units of the hopping element t. For particular choices of the coupling to the leads,
the transmission function is shown in Figure 3, the lower band edge being at E0

L = −2.005.
Thermodynamic parameters are chosen for which the function F(E) is also shown, with the
crossover energy Ê = −1.0. Application of a gate voltage characterized by the parameter
Ug shifts all energies in the transmission function τ(E) by τ(E +Ug), so that the new lower
band edge is at E0

L + Ug. The corresponding power and relative efficiency as a function of
Ug is shown in the right panel in Figure 3. The increase in efficiency is quite remarkable,
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given the estimate that η/ηc > 0.3 can make a device industrially competitive. The power
P is not maximum at the same gate voltage where the efficiency is maximum, but there is a
range of Ug for which both the efficiency and the power output are large.

Figure 3. Left panel: transmission function for a weakly disordered wire of length L = 20 in units of
the lattice spacing and localization length ξ0 = 10 L. The lower impurity band edge is at E0

L = −2.005
Difference of the Fermi functions F(E) = fH(E)− fC(E) (solid black curve) with TH = 0.5, µH = 1.0,
µC = 1.68, and Ê = 1.7. A gate voltage corresponding to Ug = 1 will move E0

L and align it with
Ê. Right panel: the efficiency η/ηc and power output P as a function of the gate voltage, using the
parameters chosen in the left panel. Maximum power occurs at Ug = 1, where the lower band edge
aligns with Ê. At the same time, there exists a wide range of Ug for which η/ηc > 0.3 and P is near
the peak value [50].

While the above estimate is promising, the maximum power P for a single nanowire
considered in Figure 3 is of the order 10−4 t2/h. This is clearly too small to be useful in
any practical device. However, the advantage here is that one can have a large number of
independent parallel wires, all connected to the same leads and all subject to the same gate
voltage, which will increase the power output without compromising efficiency. In other
words, such a device is scalable. One limiting consideration is that if the wires are too close
to each other, then the interactions between them can become important, and the wires can
no longer be treated as independent.

One important additional advantage of the tunable device is that in any device,
the chemical potential will depend on the resistance of the load. Since Ê depends on the
chemical potentials, the efficiency and power will also change with each different load.
However, the device can be easily optimized for each load by tuning the lower band edge
appropriately, hopefully by turning a knob, instead of having to fabricate customized
systems for running different loads. Thus, while running a fan during the day, the device
can be tuned for optimum efficiency and power, and it can be also be optimized for lighting
a bulb at night by simply turning the same knob.

3. Phonon Localization

In principle, the thermal conductivity of a system could be reduced by the scattering of
phonons from impurities in the bulk. Similarly to electrons, phonons could also be spatially
localized in a certain region of the sample if the disorder is sufficiently strong. Before our
discussion of thermal conductivity, it is worth understanding the scattering of phonons
in disordered structures, and in particular, the possibility of the spatial localization of
acoustic waves. Various numerical simulations and experiments [51–61] confirm that the
localization of phonons plays an important role in the reduction in the thermal conductivity
of various systems.

The localization of electrons due to bulk disorder [62] is responsible for a variety
of experimentally observed phenomena; from weak localization and universal conduc-
tance fluctuations in samples with weak disorder [63], to the localization of electrons in
the strongly disordered systems (for review, see [64–66]). Since localization is a wave
phenomenon caused by the interference of multiple scattered waves, it should also in-
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fluence the propagation of classical waves through non-homogeneous media [67]; either
electromagnetic waves [68,69] or acoustic waves [70].

Although similar in its physical origin [71–74], the localization of phonons caused
by systematically increasing bulk disorder had been much harder to observe. A primary
reason is that while for electronic systems, transport is dominated by electrons near the
Fermi energy, heat transport involves a sum over a band of phonon frequencies, including
very low frequencies (large wavelengths) that are difficult to localize. Thus, even when
high-frequency optical phonons are localized, transport is dominated by the band of
ballistic or diffusive phonons that remain delocalized. Consequently, typical transport
measurements do not show evidence of localized phonons. Furthermore, the localization
of an acoustic phonon of a given frequency appears only if the disorder exceeds its critical
value; as numerically shown in [52], the localization of acoustic waves in a binary alloy
requires that the masses of two kinds of atoms differ from each other by an order of
magnitude. For instance, the localization of phonons in Ba8Si46 was observed and related
to very low thermal conductivity in [55] (atomic mass of Barium and Silicon is 137 and 28,
respectively). The prediction of [52] is consistent with numerical work [75], which observed
no localization in carbon nanotubes (with isotope 14C playing the role of disorder) and
boron–nitrite nanotubes (for experiments, see [76]). Localization of optical phonons was
theoretically found in the AlxGa1−x alloy when x exceeds critical value xc ≈ 0.45 [56].

For completeness, we also report the experimental observation of localization phe-
nomena in phononic systems in macroscopic structures. For instance, the weak localization
of seismic waves has been observed in [77], and the localization of ultrasound waves was
observed in a system of randomly distributed aluminum beads [78]. The phenomenon of
localization of acoustic waves is used for the engineering of new metamaterials [79–82].
The role of localization in nanowires will be discussed in the next section.

3.1. Quasi-One-Dimensional Structures with Surface Disorder

The special case of a localization phenomenon arises in quasi-one-dimensional sys-
tems, with a length much larger than width, in which disorder is present only by the
corrugation of the surface. In the unperturbed quasi-one-dimensional wire, the propagat-
ing wave can be decomposed into a sum of partial waves:

Ψ(ω, r) = ∑
n

anΦn(k⊥n · r⊥)eik‖n z (14)

with the sum consisting of all components of the wave vector, k = (k⊥, k‖), with a real k‖.
If surface disorder is present, components with k⊥ � k‖ scatter only weakly, in contrast to
waves with large values of k⊥ [83–85]. This means that the wave with a given frequency ω
always contains components which only weakly scatter on the surface and guarantee the
non-zero value of the conductance [86–88]. The strong influence of the surface disorder on
the transmission properties of the nanowire can be used to design samples with required
transport properties [89,90]. Note that this conclusion holds for scattering both classical
(electromagnetic, acoustic) waves and quantum waves (electrons) [91,92].

As mentioned previously, numerical works using properties of realistic surface irregu-
larities have provided a lot of detailed information about the role of surface disorder in
thin corrugated wires, but it is difficult to use them to develop a systematic framework
which allows, e.g., a detailed calculation of the thermoelectric current. An alternative
approach that combines a simple analytic framework together with the numerical method
described above provides some complementary insight into the effects of surface disorder.
The analytic part exploits an exact mapping which we will consider in some detail later.
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3.2. Excitation of Localized States

As is important in the context of thermoelectricity, here we only focus on the excitation
of localized phonon states. Figure 4 presents another feature of the samples with surface
corrugation, some of the phononic states become localized in a certain region of the sample.
The amplitude of the localized wave exponentially decreases as a function of distance
from the localization center. Acoustic waves propagating along the wire can excite such
localized states. This process reduces the transmission of acoustic waves. This mechanism
of reduction in the conductivity works only for phonons, not for electrons, because the
latter have much smaller wavelengths.

It turns out that the interaction of propagating waves with localized modes strongly
influences the transmission through the sample. For instance, in a strongly disordered
electronic system, it explains the mechanism of transmission of electrons by the coupling
of propagating electrons with localized states inside the structure [93]. This mechanism
was confirmed experimentally in optical one-dimensional structure [53] and generalized to
three-dimensional systems in [94].

In photonic structures, the coupling of propagating waves with localized eigenstates
can also be identified [95–97]. Photons can also induce localized surface plasmons [98–100],
which we do not discuss here. General theory of excitation of localized states by propagating
waves is described in [101,102]. In an acoustic model, the excitation of localized phonon
states by propagating acoustic phonons was numerically described in [103]. A detailed
description of the model will be given in Section 4.

Figure 4. Acoustic phonons localized in wires with surface corrugation. Three localized eigenstates
of the structure displayed on the top panel are shown (the eigenfrequency is given in the legend; for
a definition of the model, see Section 4.3) [104].

4. Thermal Conductivity

As (11) shows, any heat current through the system diminishes the thermoelectric
efficiency. In the estimates above in Section 2, the heat current through the nanowire carried
by the electrons, characterized by the thermal conductivity κe, was included; however, the
heat current from phonons, characterized by the thermal conductivity κph, has been entirely
ignored. Indeed, even the most efficient device discussed above could become hopelessly
inefficient if the total thermal conductivity κe + κph of the wire is too large. In general,
κph � κe, so the phonon part is usually the more important contribution. In particular,
silicon nanowires with weak bulk disorder have a relatively large κph that can reduce the
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efficiency of a silicon-nanowire-based device by a significant factor. While a lot of work has
been done on thermal conductivity in low-dimensional systems [79,105–116], the role of
surface disorder has only recently been systematically studied. We will review experiments
that show the role of surface disorder in reducing the thermal conductivity.

4.1. Experiments

Fortunately, a series of recent experiments [117–124] have shown that, while weak
bulk disorder does not appreciably change the thermal conductivity of a nanowire, then
surface disorder can reduce it significantly. Li et al. [118] measured the linear response
thermal conductivity κ as a function of temperature T from 25 to 325 K for a series of
“smooth” Si nanowires, grown by the vapor–liquid–solid process (VLP), of diameters 115,
56, 37 and 22 nm. On the other hand, as shown by Hochbaum et al. [119], if the wire is
prepared in a different way (electroless etching (ELE)) such that the surface is “more rough”,
the phonon thermal conductance can be almost an order of magnitude smaller near room
temperature. In fact, the thermal conductivity in such wires can reach the amorphous limit
when the diameter d ∼ 50 nm, although the wire is far from being amorphous. Figure 2
of [119] shows the difference between the two types of surface disorder, VLP vs. ELE.

Lim et al. [121] performed a systematic characterization of the surface roughness
to understand the difference in the two sets of wires in Ref. [119]. In particular, they
defined a roughness power spectrum that characterizes the disorder of the wire and
concludes that a frequency-dependent phonon scattering is an important consequence of
the surface roughness.

The dependence of κ on the diameters of the VLP wires in Figure 2 of [119] (with the
exception of the 22 nm wire) can be understood in terms of the Boltzmann transport of
phonons through a tube with specular as well as diffuse boundary scattering [125], which
predicts a linearly decreasing κ with the decreasing diameter of the wire. However, for
the ELE wires, even the maximum diffusive surface scattering model cannot explain the
phonon thermal conductance, which can be almost an order of magnitude smaller near
room temperature. Monte Carlo simulations by Moore et al. [126] showed possible phonon
mean free paths below the Casimir limit (of the order of the diameter), but this is not enough
to explain the experiment on ELE wires mentioned above. Interestingly, Martin et al. [127]
explained the surprisingly small κ within a Born approximation for phonon scattering
where the surface roughness changes the phonon dispersion relation; this predicts a d2

dependence of κ as opposed to the linear dependence within a Boltzmann transport
formulation. However, Carrete et al. [128] points out that Born approximation should
break down at wavelengths comparable to the size of the scatterers. They use an atomic
level investigation to conclude that Born approximation overestimates thermal resistance
by an order of magnitude, and so cannot explain the experiments of Hochbaum et al.

4.2. Surface Disorder

The experiments of [119,121] show the importance of understanding the role of surface
disorder in nanowires within the context of thermoelectricity. A good thermoelectric device
needs good electrical conduction. Since electrical conduction is governed by electrons at
the Fermi-surface, it is more sensitive to defects and scattering centers in the bulk. This
implies that bulk disorder must be weak for a good thermoelectric device. At the same time,
it requires very low thermal conductivity, which is dominated by the acoustic phonons
due to their larger velocity. These long wavelength phonons are largely insensitive to bulk
disorder. Thus, bulk disorder affects electrical and heat conduction differently [129]. It
is claimed that “designer disorder” [81], where a correlated disorder is introduced into a
crystalline material, can be used to control the thermal conductivity. However, it is more
appropriate for thin film geometry, where two crystals with similar structures can be grown
one on top of the other, resulting in a ‘crystallographic conflict’, which plays a role in the
resulting thermal conductivity.
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On the other hand, effects of surface disorder are more nuanced [80,88,130]. Indeed,
it has been suggested on the basis of density functional theory [131] that for lithiated
silicon nanowires, the effects of disorder and surface roughness is to increase the electrical
conduction with lithium concentration as the Li ions metallize the Si nanowires, while the
thermal conductivity decreases significantly due to random distribution of Li atoms. On the
other hand, non-equilibrium Green’s function techniques have been used [132] to suggest
that surface roughness suppresses small bias electrical current with length, and as the
diameter of a nanowire becomes smaller, a transition to an Anderson localization regime
may occur, making it an insulator with zero current. Thus, it is important to distinguish
between different types of surface disorder that might affect phonon and electron transport
differently. Typically, surface disorder starts to affect electron transport only when the
diameter of the wire becomes comparable to the Fermi wavelength, which is much smaller
than typical nanowires which might be used in a thermoelectric device. On the other hand,
long-wavelength acoustic phonons can be significantly affected by surface disorder when
the diameter is less than 100 nm, as shown in experiments by Hochbaum et al. These
considerations suggest that a nanowire with large surface disorder (but not too small a
diameter) would be an ideal candidate for an “electron metal, phonon glass” material as
needed for a good thermoelectric device.

4.3. Numerical Methods

The effects of surface disorder on phonon transport in nanosystems have been numer-
ically studied using a variety of techniques [112,126,133–141] including Monte Carlo and
molecular dynamics as well as models using wave-scattering formalism. Such techniques
rely on the careful modeling of realistic surface disorder and its effects on elastic waves
inside the system. Since surface disorder is characterized by several different parameters,
such as the mean fluctuation of the surface roughness height h, its correlation length lc,
the diameter of the wire d as well as the length L, numerical simulations need to be done
for a variety of different values of all these different relevant parameters.

For later reference, we described a simple model used in Refs. [103,104], explicitly
designed to study some of the predictions of an analytical study that we will discuss shortly.
In this method, the nanowire is represented by a two-dimensional square lattice of size
d× L, L� d, with lattice constant a = 1. Simulations were carried out for 64 < d < 256,
and L > 1000. This would correspond to nanowires 12–50 nm wide and more than 200 nm
long. For the atoms located at the site x, y, the discretized wave equation representing a
propagating phonon reads:

mxy

k
∂2uxy

∂t2 = ux+1,y + ux−1,y + ux,y+1 + ux,y−1 − 4uxy. (15)

Atomic mass mxy mimics bulk disorder; we assume mxy = m = 1 and spring constant
k = 1. The model is studied in the time domain in [103], and in the frequency domain,
after substituting uxy(t) = Uxye−iωt, in Ref. [104]. Due to the periodicity of the lattice,
the frequency spectrum in the leads consists of a band, 0 ≤ ω ≤ 2

√
2, with a Van Hove

singularity (typical for 2D systems) at ω = 2 [5].
In order to create the surface disorder characterized by appropriate values of the

parameters h, lc and d, a set of random numbers {ξx}, x = 1, 2, · · · , L, is generated
with zero mean and correlation 〈ξxξx′〉 = h2e−|x−x′ |/lc . A surface profile is defined by
yx = ξx + δ, with a constant shift δ = minξx, which guarantees that yx ≥ 0 for all x. Then,
for a given x, all atoms with y ≤ yx are substituted by heavy atoms of mass M = 104 m.
The opposite boundary of the sample is constructed in a similar way. This effectively
restricts phonons to only propagate in the region occupied by the light atoms, which forms
a surface corrugated wire. Note that the model mimics fixed boundary conditions along the
corrugated surfaces. It will be important to extend the method to free boundary conditions
for further studies [133].
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A typical surface profile is shown in the upper panel of Figure 4 for the sample 32× 160
and surface parameters h = 8 and lc = 12. Three localized phonons shown in Figure 4
were calculated by the direct diagonalization of the lattice Hamiltonian. Analysis of the
entire spectrum of phonons indicates that localized phonons exist for any frequency ω and
their density increases in the middle of the frequency band [104].

In the time domain, the sample is excited by an external source located in the middle
of the wire and its time evolution uxy(t), given by Equation (15), is calculated. In the
frequency domain, the wave model (15) is mapped, following Ref. [67], onto an electronic
model with energy E = (m/k)ω2 and bulk potential Vxy = (mxy/m− 1)ω2. The sample is
then attached to two semi-infinite leads (see Figure 4). An incident monochromatic acoustic
wave with frequency ω propagates through the left lead, scatters in the sample, and the
transmission coefficient g(ω) is calculated by the transfer matrix method [142–144]. The
transmission coefficient as a function of the frequency exhibits a deep dip around the van
Hove singularity, which is the frequency region where the density of localized phonons is
maximal [104]. The thermal conductivity of the sample is then:

κ(T) =
L
d

K(T) (16)

where T is the temperature and K(T) is the thermal conductance, given by

K(T) =
∫

ω
dω g(ω)

[
ω/2T

sinh ω/2T

]2
(17)

(we use the system of units in which Planck and Boltzmann constants h̄ = kB = 1). Note
that in contrast to the conductance of electrons, which is calculated only at the Fermi energy,
the conductance K(T) is determined by phonons from the entire spectra of the lattice.

Results for different values of h and lc show [104] that the thermal conductivity κ
(Equation (16)) decreases with increasing h but increases as either the correlation length lc
or the width of the wire d increases. We will later see how such numerical methods can
be used to check theoretical predictions and extract important additional properties that
provide useful insights into the effects of surface disorder.

Various numerical methods were used for a more detailed numerical analysis of a
given nanowire structure and the role of the surface disorder. Akguc and Gong [134]
discussed the role of the correlation of the corrugation. The scattering of elastic waves in
the continuous model was studied by Maurer et al. [133]. By comparing the two models,
with fixed and free boundary conditions, they found that the free boundary conditions
support the surface localized modes which further reduce the thermal conductivity. Quanti-
tative calculations of both electron and phonon transmission in thin silicon nanowires were
performed in [114,129]. He and Galli [137] numerically searched for the specific design of
Si nanowires and found that a significant decrease in the thermal conductivity requires a
combination of bulk and surface disorder. Zushi et al. [138] reported a reduction in the
thermal conduction due to the SiO2 layer at the nanowire surface.

5. Localized Phonons and Surface Disorder
5.1. An Exact Mapping

It was first suggested in [145] that the large effects of surface disorder on the ther-
mal conductance in thin silicon nanowires experimentally observed in [119] could be
understood as the strong scattering of the propagating phonons (that carry heat) from
localized phonons present in the wire at random positions that can arise due to a strong
surface roughness. The suggestion is based on an exact mapping of a disordered wire
with surface roughness to an equivalent smooth wire with an additional channel-mixing
pseudo-potential. This mapping was introduced by Tesanovic et al. [146], who used it to
work out the effects of surface disorder on electron transport in thin films. This is very
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helpful because various approximate but systematic theoretical methods exist to study
smooth wires with different types of interactions.

The method was adapted in Ref. [145] for phonon transport, where the additional
interaction term was interpreted as representing a localized phonon operator which couples
to the propagating phonons, given by a phenomenological Hamiltonian:

Hint = ∑
l

∫
dxA(x)A(x)φ(x− xl); A(x) = b(x) + b†(x). (18)

Here, b and b† are destruction and creation operators for phonons and φ(x− xl) is
the pseudo-potential, where xl are randomly distributed. The interpretation that φ is
proportional to a localized phonon operator and that the impurity averaged 〈φφ〉random is a
measure of disorder (rms fluctuations of the thickness of the wire) then allows one to use
the standard perturbation theory [147]. The impurity averaged exchange self energy for
the propagating phonons can be written as

Σint
p = Nimp ∑

q,ν
uqu−qd̂d(ν)D̂p−q(ω− ν) (19)

where Nimp is the number of impurities over which the averaging is done, uqu−q is related
to the 〈φφ〉random, and d̂ and D̂ are the localized and the propagating phonon Green’s
functions, respectively. Analysis of the experimental data by Lim et al. [121] suggests the
following model for uqu−q:

uqu−q = W0
∆2

1 + q2l2
c

; ∆ =
h
d

(20)

where the mean corrugation height h, the correlation length lc and diameter d define the
strength of surface disorder and W0 defines the strength of the coupling of the propagating
phonons with the localized one. This provides an analytically tractable model to explore the
role of surface roughness in reducing the thermal conductance, with realistic parameters
directly related to the experiments.

5.2. Phonon Localization Due to Surface Roughness: Numerical Evidence

As discussed before, surface disorder is responsible for the existence of localized
phononic states located in certain narrow parts of the sample. These resonances can be
excited by phonons incident on this region from other parts of the system [96,101,102].
For thin wires, these resonances at random positions on different surfaces can sometimes
combine to help create localized phonons across the width of the wire that can scatter
phonons propagating along the length of the wire with large amplitudes. Thus, surface-
roughness dominated nanowires are ideal candidates to observe the localization of phonons
with increasing disorder. One effective way to study localized phonons, as suggested
in [103], is to study the space and time evolution of the energy generated by a heat-pulse
injected at a given point in a wire, solving the wave Equation (15). For samples excited by
a time-dependent force acting on atoms in one column near the center of the wire, as the
resulting energy propagates through the sample, there are several (related) quantities that
should be sensitive to localization:

(i) The energy E(x, t) (kinetic plus potential) accumulated at time t in the column x:

E(x, t) = ∑
y

E(x, y, t). (21)

(ii) Energy in a given region, defined as

Es(t) = ∑
|x−xs |<∆

E(x, t), (22)
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where ∆ is an appropriate range (100 lattice spacings). This should remain indepen-
dent of time for a localized phonon.

(iii) Normalized mean square energy displacement defined as

r2(t) =
1

E(t) ∑
x

(x− xs)2

12L2 E(x, t), E(t) = ∑
x

E(x, t) (23)

which measures the diffusion of energy from the source at a given time. While r = 1
means energy is homogeneously distributed along the sample, a saturation value of
r << 1 after a transient time would clearly correspond to a localized phonon.

All of these measures show a clear signature of localization in numerical simula-
tions [103]. As an example, Figure 5 shows the space and time evolution of normalized
energy in the system excited by the heat pulse:

Eheat = exp
[
− (t− t0)

2

2σ2

]
cos ωt (24)

with parameters t0, σ� τ = 2π/ω to assure that excited phonons are almost monochro-
matic. As is seen in the upper panel, part of the energy escapes the sample very quickly,
being transmitted by ballistic phonons which do not scatter at the surface (Equation (14)).
This energy is absorbed on the left and right boundaries and is not reflected back to the
sample. Some parts of the energy, however, excited spatially localized resonances. The en-
ergy, trapped in the region of localization, might be re-emitted and absorbed by another
resonance or reach the boundary of the sample. After a rather long period, only a few
resonances survived, which are shown in the lower panel.

Figure 5 shows that a thin wire with corrugated surface contains quite a large number
of localized phonons. As discussed in Ref. [103], the number of localized states increases
when the frequency ω of the heat source increases, in agreement with frequency de-
pendence of the transmission g(ω) discussed in the previous section. The lifetime of
localized resonances depends, of course, on the coupling of localized state to propagat-
ing waves [148], and of course, on the overlap of the localized waves of neighboring
localized states.

Results shown in Figure 5 seem to suggest a straightforward inspiration for the
observation of individual localized phonons in real experiments. However, owing to the
high density of localized phonons, implementing this method might be difficult since it
will require a very narrow frequency pulse.

5.3. Disorder Parameters and Universality

As mentioned above, there are many experimental parameters that can affect the
thermal conductance of a thin wire with surface roughness. The experiments on silicon
nanowires discussed above were characterized by several parameters, namely the rms
height h of the roughness profile and a correlation length lc, as well as the diameter d of
the wire, which is chosen to be much smaller than the length L of the wire. Assuming
that the propagating phonons scatter from localized phonons as interpreted from the exact
mapping, it was first conjectured in [104] that for a given width d of the sample the thermal
conductivity is a universal function of a single parameter:

ξ =

√
lcd
h

. (25)
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Figure 5. Space and time evolution of normalized energy in a weakly surface disordered sample,
with (d, lc, h, L)= (64, 200, 6, 16,000). A set of resonances excited by an external source with period
τ = 23 corresponds to localized phonons with eigenfrequencies ≈ 2π/τ lying in the lower part of
the acoustic frequency band. Note the length of the sample L = 16,000 and the time of simulations,
3× 105 in comparison with the period T = 23 of excited acoustic waves. Perfectly absorbed boundary
conditions [149] were implemented at the left and right boundaries of the wire in order to eliminate
any reflection of the energy: Upper panel: the space–time dependence of the amplitude of the acoustic
wave; Middle panel: the spatial distribution of energy E(x, y) at a time t = 194,400; Lower panel:
time evolution of the energy at x = 9510 and x = 14,653. Localized states are first excited by phonons
from the source (the narrow maxima at the beginning of the time evolution) which then exchanges
their energy with other localized states in its neighborhood. The energy of a localized state close to
the boundary exponentially decreases due to loss through the right boundary of the sample [103].

The universality was numerically verified, using the method discussed above, where
the thermal conductance of different sets of the parameters but with the same value of
ξ were shown to be similar. To demonstrate the universality, Figure 6 presents the ξ
dependence of the integrated quantity:
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I =
∫

dTK(T). (26)

where I serves as a “figure of merit” since the temperature dependence of the thermal
conductivity κ(T) is monotonic. Inset of Figure 6 indeed shows that the T-dependence of
K(T) is universal. It was shown in Ref. [103] that the time evolution of energy after a pulse
injected in the wire also satisfies this universality. This makes a theoretical study much
easier, where one does not have to consider the effects of each of the parameters individually.
It also makes experimental studies more flexible, where one can choose different sets of
parameters to fabricate wires with the same effective strength of disorder. While the known
parameters in existing experiments [119] seem to support this universality [104], there has
been no systematic experimental study to confirm this important result to date.
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Figure 6. Integral I, given by Equation (26) of the thermal conductance over frequency for wires with
different combinations of the disorder parameters. Overlapping region confirms the universality (25).
The size of the wire is d × L = 256 × 2048. Data for the same symbol correspond to samples
with different surface corrugation h. Inset confirms that two samples with the same value of ξ

possess the same thermal conductance K(T) for any temperature (shown by solid lines and dots,
respectively) [104].

5.4. Non-Linear Thermal Current

For a general frequency-dependent current J(ω), the thermal conductivity κ0 in the
linear response regime (with TH − TC ≡ ∆T → 0) is defined as

κ0 =
∫ ωD

0
dω ω J(ω)

∂b(ω)

∂T
; b(ω) =

1
eω/T − 1

, (27)

where b(ω) is the Bose–Einstein distribution and ωD is the Debye frequency. In the non-
linear regime, for finite and possibly large ∆T, one can define an analogous
quantity, namely:

κnl =
Jnet

∆T
; Jnet ≡

∫ ωD

0
dω J(ω). (28)

The total current is a function of disorder as well as the lead temperatures.
Study of non-linear thermal transport in the presence of localized phonons requires

using the full machinery of non-equilibrium quantum field theory [150]. In Ref. [151],
non-equilibrium Green’s function techniques were used to evaluate the thermal current
beyond the linear-response regime. For simplicity, only the effects of one localized phonon
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were considered, the width of the localized phonon chosen to be Γ ∝ ξd where it is assumed
that the surface disorder can be characterized by the single parameter ξ as defined in (25).

As expected, Figure 7 shows the thermal current with a clear dip in the assumed
localized-phonon frequency, reducing the resulting thermal conductance. The normalized
non-linear thermal conductivity κnl/κ0 as a function of the cold lead temperature (for a
fixed ∆T) shows more reduction for larger surface disorder (smaller ξ ) at larger temper-
ature difference. Unfortunately, there are no existing experiments for thermal current at
large temperature differences. Systematic experimental studies of the thermal current
with different values of ∆T as well as different strengths of surface disorder character-
ized by ξ will be valuable in understanding the role of localized phonons in the context
of thermoelectricity.
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Figure 7. Effect of a single localized phonon on the thermal current as a function of frequency for
various surface disorder (top panel) and the non-linear thermal conductivity as a function of the
temperature TR of the cold lead for various temperature differences (bottom panel). Frequency and
temperature are given in units introduced in the text. Reprinted from Ref. [151].

The model includes only one localized phonon at a fixed frequency and a fixed decay
rate; a more realistic model should include a distribution of frequencies as well as the decay
rates of the localized phonons characterized by the type of disorder. The model does not
provide a dependence on the diameter of the wire, which is clearly observed in experi-
ments [119,121,152]. It would be important to understand if/how the averaging over the
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impurities might lead to a diameter dependence of the thermal current, which will allow a
deeper understanding of the relationship between surface disorder and localized phonons.

In addition, at high temperatures and large voltage differences, phonon–phonon
interactions become important [153]. Beyond the couplings of the lead phonons with the
phonons in the wire, it will also include three-phonon processes [125]. This is expected to be
important especially if, e.g., the disorder leads to large scattering for high-energy phonons.
Indeed, in a simulation of waves through disordered waveguides, Sanchez-Gil et al. [86]
and Sadhu et al. [87] found evidence for ballistic, diffusive as well as localized waves
to coexist within the same scale length, due to surface-type disorder. While low-energy
acoustic phonons typically contribute more to thermal conductivity, high-energy phonons
can become important at high temperatures [154]. The scattering of the high-energy optical
phonons could therefore be important for thermoelectric devices.

Finally, effects of electron–phonon interactions [155–157] have not been included,
with few exceptions like a molecular junction with vibrational coupling [40]. This can affect
the transport of both the charge and the heat transport, thereby affecting the thermoelec-
tric properties.

6. Summary

Silicon nanowires with a particular type of surface roughness (electroless etching)
have been experimentally shown to have very low thermal conductivity, which makes them
a good candidate to be an efficient thermoelectric device. We review the theoretical claim
and numerical evidence that this is due to the existence of localized phonons in the surface-
disordered nanowires. An important consequence of these analytical and numerical studies
is that although the surface roughness is characterized by several parameters, a single
universal combination of these parameters describes the effective strength of the surface
disorder. This is very useful for both theoretical and experimental studies of the effects of
surface roughness on the thermal transport properties of the nanowire and needs to be
experimentally investigated.

In addition to the lower thermal conductivity, we also review the idea that the overall
efficiency of a thermoelectric device can be significantly improved by taking advantage
of an interplay that exists only in the non-linear regime, between the material parameters
(like the frequency dependent transmission function of the wire) and the thermodynamic
parameters (like the temperatures and chemical potentials of the leads and the loads).
The device is tunable in the sense that the efficiency can be maximized separately for
each load, by tuning, e.g., by an applied gate voltage. Such a device is also scalable;
increasing the number of wires kept in parallel and subject to the same gate voltage
increases the power output. Experiments are needed to check whether it is indeed feasible
to have both a high efficiency and a large power output in such a tunable nanowire-based
thermoelectric device.
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