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Frustration in a generalized kagomé Ising antiferromagnet: Exact results
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We obtain the exact ground-state phase diagram of a generalized kagomé antiferromagnet with both pair
and triplet interactions, J2 and J3, respectively, in the presence of a magnetic field h appropriately tuned. We
find that when the pair interaction J2 < 0 dominates, the ground state is geometrically frustrated; on the other
hand, the ground state is disordered but not frustrated when the triplet interaction J3 dominates, the boundaries
between the two cases being at J3 = ±J2. The exact ground-state crossover lines between the two distinct types
of disorder remain identifiable crossover curves at finite temperatures. In the frustrated domain, the ground state
of the three-parameter model is identical to the ground state of the prototype one-parameter (J2 < 0) model
of geometrical frustration. Towards further understanding the frustration domain of the three-parameter model,
a closed-form approximation (exact at zero temperature) determines solutions on a two-parameter subspace
for induced magnetization and parallel magnetic susceptibility at finite fields h and temperatures T , the inverse
susceptibility showing a Curie-Weiss behavior. We argue that the existence of an exact T = 0 threshold magnetic
field, below which the magnetization remains zero, indicates the existence of a gapped spectrum attributable to
the presence of the triplet interaction J3.

DOI: 10.1103/PhysRevE.106.014149

I. INTRODUCTION

Geometrical frustration in spin systems can lead to novel
and interesting disordered phases like spin glass, spin liquids,
and spin ice, including the so-called kagomé ice [1–27]. In
lattice-statistical spin models, geometrical frustration tradi-
tionally stems from antiferromagnetic nearest-neighbor spin
couplings on close-packed lattices (triangular faces). The
“kagomé spin ice” model [23] deserves special attention. The
three-parameter Ising model entails an applied magnetic field
and both first- and second-nearest neighbor pair interactions
(Ising anisotropies). The model is nonplanar (crossing interac-
tion bonds) and thus is nonintegrable. Significantly, however,
using classical simulations and Monte Carlo calculations, the
kagomé spin ice results reveal frustrated ferromagnetism.
Many approximation schemes and numerical techniques have
been developed to understand the properties of various the-
oretical models like the spin 1/2 Heisenberg model or the
asymmetric or extended Hubbard model on a geometrically
frustrated lattice [28–55]. It is well known that classical Ising
models with antiferromagnetic nearest-neighbor pair inter-
actions on either the triangular or kagomé lattice in two
dimensions have disordered ground states due to frustration
[56–58]. On the other hand, it has recently been shown [59]
that a purely triplet Ising interaction model on a kagomé
lattice also leads to a highly disordered ground state but with-
out frustration, very similar to a purely four-spin interaction
model on a three-dimensional pyrochlore lattice [60]. Each of
these models has a high degree of degeneracy in the ground
state with finite residual entropy per site, but their magnetic
properties are very different. For example, the perpendicu-
lar susceptibility χ⊥ of the kagomé Ising model with only

antiferromagnetic pair interaction diverges as T → 0, while
χ⊥ of the triplet model remains finite. Similarly the parallel
susceptibility of the pair interaction model leads to a finite
Curie-Weiss temperature �CW while �CW = 0 for the triplet
model. Thus the two types of disorder are clearly distinguish-
able by their magnetic response. We will call the disorder with
frustration as frustrated disorder (FD) and the disorder with-
out frustration as nonfrustrated disorder (NFD). The question
arises, What happens when pair and triplet interactions are
mixed?

Real physical systems with kagomé lattice structure and
antiferromagnetic pair interactions have been studied experi-
mentally [61–64]. While dominant triplet interactions are not
ubiquitous in real systems, they can nevertheless be present
as a perturbation to a dominant pair interaction, e.g., in the
description of fluids in the critical region or magnetism in
solid He3 with multiparticle ring exchange [65–68]. They
also arise as part of multispin interactions describing effective
models of alloys and spin-glass models [69–72]. A model
combining both interactions is therefore quite realistic and can
provide useful insights into the interplay of the two types of
disorder mentioned above. Such interactions can also be ex-
plored in optical lattices with cold atom technology [73–75].
In the present paper, we consider a kagomé Ising model with
both antiferromagnetic pair (J2 < 0) and localized triplet in-
teractions (J3), together with an external magnetic field (h),
generalizing the standard two-parameter kagomé Ising anti-
ferromagnet.

A generalized model with ferromagnetic pair interaction
(J2 > 0) was recently investigated to determine the com-
plete zero-temperature phase diagram by tuning the magnetic
field appropriately [76]. It was found that while long-range
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order exists for ferromagnetic pair interactions, this order is
destroyed by sufficiently large (positive or negative) triplet in-
teraction. In the J2-J3 plane, the ferromagnetic-paramagnetic
boundary occurs at |J3| = 3J2. In this paper, we analyze
the model with antiferromagnetic pair interaction (J2 < 0) in
which case there is no long-range ordering for any values of
the parameters. The three-parameter kagomé model is mapped
on to a two-parameter honeycomb Ising model with a field L∗
and pair interaction K∗, but no triplet interaction. We show
that this model is exactly solvable under the condition L∗ = 0,
which is an exact solution of the original three-parameter
kagomé model on a two-parameter subspace.

In the limit T → 0 and within the subspace, the above
mapping allows us to first obtain the ground-state phase di-
agram exactly and show that both types of disorder (FD and
NFD) exist, with a clear boundary between them at |J3| = −J2

in the J2-J3 plane. The region where pair interaction dominates
belongs to FD, while the triplet-interaction-dominated region
is NFD, both consistent with the special cases considered in
[59]. The boundary between FD and NFD at zero temperature
occurs where the strength of the triplet interaction is equal
to that of the pair interaction. This implies that for most
materials where J3 is expected to be much smaller than J2, this
boundary will not be accessible experimentally. However, we
also show that at finite temperature this boundary depends on
the ratio |J3/J2|. We obtain this crossover temperature, which
increases with decreasing |J3| for a given |J2|. We therefore
argue that for realistic materials, the boundary can be probed
experimentally at a sufficiently high temperature.

It develops that it is also possible to obtain the induced
magnetization as well as the parallel magnetic susceptibility
as a function of the field or the temperature in the afore-
mentioned two-parameter subspace. The susceptibility as a
function of temperature T diverges as 1/(T + T0), with T0 a
positive constant, as expected for an antiferromagnet; this al-
lows for an estimate of the Curie-Weiss temperature �CW . As
J3 → 0, this value tends to the kagomé Ising antiferromagnet
�KIA

CW = 4|J2|/kB, with kB being the Boltzmann constant. The
existence of a threshold field before the magnetization starts
to rise with increasing field implies the existence of a gapped
spectrum due to the triplet interaction J3.

The exact solutions use the equivalence of the canonical
partition functions of a three-parameter generalized kagomé
Ising magnet and a standard two-parameter Ising magnet on
an associated honeycomb lattice, with the grand canonical
partition function of a generalized three-parameter kagomé
lattice gas having a direct connection [76]. The solution pro-
ceeds by solving the phase boundary of the lattice-gas model
first (although it lacks a physical fluid meaning in the frus-
trated regime) and then obtaining the magnetic solutions by
using generalized fluid-magnet correspondence relations.

In these theoretical investigations of geometrical frustra-
tion, all ground-state results for the three-parameter model
are exact. The results include, e.g., the ground-state phase
diagram and the threshold magnetic fields attributable to the
presence of the triplet interaction J3. The investigations also
determine the crossover curve at finite temperatures separat-
ing the FD and NFD disordered regions. Moreover, in the
frustrated (FD) region, the ground state of the generalized
(three-parameter) model is identical to the ground state of

FIG. 1. A kagomé lattice (solid edges) and its associated honey-
comb lattice (dashed edges).

the standard 1-parameter (J2 < 0) model (all elementary tri-
angles are frustrated at T = 0 in both models) implying that
all ground-state results known for the prototype model are
transferable to the current generalized model such as residual
entropy [58] and T = 0 localized correlations [77].

The remainder of the paper is organized as follows. In
Sec. II we introduce the model and in Sec. III we outline the
formal mappings that provide the background and notations
for our current exact results. These mappings were already
discussed and used in [76], so we only summarize them
briefly. In Sec. IV we use the mappings to identify two types of
disorder FD and NFD and obtain the boundary between them.
In Sec. V we focus on the frustrated region and obtain exact
solutions for the ground state as well as induced magnetization
and parallel magnetic susceptibility of the three-parameter
model on a two-parameter subspace. In Sec. VI we explore
the possibility of going beyond the two-parameter subspace
within a perturbative approach. We summarize our results
in Sec. VII. Appendix A contains a direct proof that the
magnetic field parameter L∗ in the associated honeycomb
Ising antiferromagnet is pure imaginary if the ground state
is geometrically frustrated, while Appendix B proves that all
zero-field odd-number correlations vanish identically in the
ground state (T = 0) for such frustrated domains. In Ap-
pendix C we obtain the condition for L∗ = 0 in the FD region
in the limit T → 0. Appendix D obtains the zero-temperature
limits L∗(T → 0) in the FD and NFD regions.

II. THE GENERALIZED KAGOMÉ ISING
ANTIFERROMAGNET

In [59] a pair and a triplet Hamiltonian were considered
separately,

−Hpair = J2

∑
<i, j>

σiσ j, (2.1a)

−Htriplet = J3

∑
<i, j,k>

σiσ jσk, (2.1b)

where σl = ±1, l = 0, 1, . . . ,N − 1 are the Ising variables
(N being the total number of sites of a kagomé lattice), the
summation

∑
<i, j> is taken over all distinct nearest-neighbor

pairs of sites of a kagomé lattice (see Fig. 1, solid edges),
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and
∑

<i, j,k> is taken over all triplets of sites belonging to
elementary triangles. Both models were shown to have disor-
dered ground states for J2 < 0 and arbitrary J3. Here we add a
magnetic field and consider the combined Hamiltonian

−HI = h
∑

i

σi + J2

∑
<i, j>

σiσ j + J3

∑
<i, j,k>

σiσ jσk . (2.2)

The inclusion of a longitudinal magnetic field h enables in-
vestigations of χ‖, the parallel magnetic susceptibility of the
model. We will call model (2.2) a generalized kagomé antifer-
romagnet.

The partition function for model (2.2) can be mapped
exactly, via an intermediate lattice-gas model in the grand
canonical ensemble, to the partition function of a standard
Ising model on an associated honeycomb lattice (see Fig. 1,
dashed edges) with a magnetic field and a nearest-neighbor
pair interaction without any triplet interaction. Using this
mapping, (2.2) with ferromagnetic pair interaction was solved
exactly for the zero-temperature phase diagram with long-
range order [76]. Here we will consider antiferromagnetic pair
interactions and study the regions where there is no long-range
ordering. In order to introduce the background and appropriate
notations, we give here a brief outline of the mapping. For
details we refer to [76].

III. MAPPINGS

The mappings outlined in [76] are done in two parts. The
first part establishes the equivalence between the magnetic
canonical partition function of (2.2) with the grand canonical
partition function of a generalized kagomé lattice-gas model

−Hlg = ε2

∑
<i, j>

nin j + ε3

∑
<i, j,k>

nin jnk, (3.1)

where ε2, ε3 are pair and triplet interaction parameters,
respectively. The lattice-gas variables nl are idempotent site-
occupation numbers defined as nl = 1 if site l is occupied and
0 if site l is empty. In (3.1), an infinitely strong (hard-core) re-
pulsive pair potential has also been tacitly assumed for atoms
on the same site, thereby preventing multiple occupancy of
any site as reflected in the dichotomic values of the occupation
numbers. Defining

L ≡ βh, K ≡ βJ2, M ≡ βJ3 (3.2)

and

K2 ≡ βε2, K3 ≡ βε3 (3.3)

with β ≡ 1/kBT being the “inverse temperature,” the equiva-
lence is given as

e(L−2K+2M/3)N Z (L, K, M ) = �(μ,N , T ), (3.4)

with

L = K2 + K3

4
+ βμ

2
, K = K2

4
+ K3

8
, M = K3

8
. (3.5)

Here [in (3.4)] the magnetic canonical partition function
Z (L, K, M ) associated with (2.2) is given by

Z (L, K, M ) ≡ Trσ e−βHI , (3.6)

and the grand partition function �(μ,N , T ) associated with
(3.1) is given by

�(μ,N , T ) ≡ Trne−β(Hlg−μN ), (3.7)

where μ is the chemical potential with N being the conjugate
total number of particles, N = ∑

i ni, i = 0, 1, . . . ,N − 1.
For later purposes, we define

x ≡ eK2 , y ≡ eK3 , z ≡ eβμ (fugacity). (3.8)

The relations (3.5) between the parameters of the general-
ized magnet (3.6) and the generalized fluid (3.7) effectuate
a generalized fluid-magnet correspondence. The one-to-one
mapping between fluid and magnetic phase boundaries is di-
rect and valuable. More definitely, we define the parameters α

and α′ as

α ≡ −ε3

ε2
, α′ ≡ −J3

J2
. (3.9)

Using (3.3) and (3.8), this implies

y = x−α. (3.10)

In addition, (3.2), (3.3), (3.5), and (3.9) can be combined to
obtain the fluid-magnet correspondence relation

h

J2
= 4

2 − α

(
μ

ε2
+ 4 − α

2

)
. (3.11)

The relation between α and α′ turns out to be simply given by

α′ = α

2 − α
. (3.12)

In the second part, a mapping establishes the equivalence
(aside from known prefactors) between the grand canonical
partition function �(μ,N , T ) of a generalized lattice-gas
model on the kagomé lattice with a standard two-parameter
Ising antiferromagnet on the associated honeycomb lattice
(Fig. 1 with dashed edges)

−βH∗
hc = L∗ ∑

i

μi + K∗ ∑
<i j>

μiμ j, (3.13)

where each site-localized Ising variable μl = ±1, l =
1, . . . ,N ∗(= 2N /3), and L∗, K∗ are dimensionless pa-
rameters for the magnetic field and nearest-neighbor pair
interaction, respectively.

The equivalence is given by

�(μ,N , T ) = Z8V (a, b, c, d ) = (a∗/2 cosh L∗)N
∗

×(1/ cosh K∗)
3N∗

2 Z∗(L∗, K∗). (3.14)

Here the magnetic canonical partition function of the model
(3.13) is given by

Z∗(L∗, K∗) = Trμe−βH∗
hc , (3.15)

where the trace symbol μ represents the set of total N ∗
Ising variables [no confusion with the chemical potential
in (3.7) should arise]. The parameters K∗, L∗, and a∗ are
given in terms of the vertex weights of the intermediate
honeycomb symmetric eight-vertex model partition function
Z8V (a, b, c, d ) (see Appendix A).

We emphasize at this point, for later interpretations, that
while the field L∗ is real for K∗ > 0, the mapping guarantees
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that it is pure imaginary for K∗ < 0. This might seem puz-
zling, since it makes the Hamiltonian (3.13) non-Hermitian.
However, (3.13) is PT symmetric, where P and T refer to
parity and time-reversal symmetry, respectively, guaranteeing
real eigenvalues [78]. The important point to keep in mind is
that the mapping is between partition functions, and the parti-
tion function (3.15) corresponding to (3.13) remains real and
physical when L∗ is pure imaginary, as shown in Appendix B.
Concerning the condition L∗ = 0, one is reminded that the
(3.15) partition function Z∗(L∗, K∗), L∗ �= 0, of a standard
form planar Ising model (3.13) persists as arguably the most
noted unsolved partition function in statistical mechanics! In
the present work, we will mostly consider the case L∗ = 0, for
which the Hamiltonian (3.13) is Hermitian.

The pair-interaction parameter K∗ plays a key role in the
current theory and can be rewritten [76] in terms of the lattice-
gas parameters x, y, z as

4K∗ = ln

{
1 + x2zl

[x2z(xy − 1) + x − 1]2

}
, (3.16)

where

l = l (x, y) ≡ (x2y − 1)2 − 4(x − 1)(xy − 1). (3.17)

The null (or nodal) condition l = 0 separates the ferromag-
netic (K∗ > 0) and antiferromagnetic (K∗ < 0) disordered
regions in (3.16). The general expressions for a∗ and L∗ in
(3.14) are complicated, and we write the complete expressions
in Appendix A.

IV. TWO TYPES OF DISORDER

The generalized kagomé antiferromagnet model (2.2) with
J2 < 0 has states that remain disordered down to zero tem-
perature for all values of the parameters, as shown in [76].
We show below how a detailed study of the parameter K∗ in
(3.16) allows us to identify two distinct types of disorder that
separate the J2-J3 space with a clear boundary between them.

A. The parameter K∗

As a result of the mapping from a three-parameter kagomé
Ising antiferromagnet (2.2) to a two-parameter honeycomb
Ising model (3.13), K∗ in (3.13) is not a standard reduced
(dimensionless) pair-interaction parameter; it is a highly
nontrivial function of all of the parameters of (2.2). The
expression (3.16) for K∗ is in terms of the intermediate lattice-
gas parameters, related to the parameters of (2.2) by the
fluid-magnet correspondence relation (3.11). Clearly, given
(3.16), different zero-temperature limits of K∗ exist for dif-
ferent choices of the parameter α = −ε3/ε2. These limits
determine whether the corresponding ground state is ordered
or disordered. In particular, under a zero field condition L∗ =
0, it is known [79] that the ground state of (3.13) has a sub-
lattice long-range ferromagnetic order if K∗(T → 0) > K∗

c ,
where K∗

c is a known critical value

K∗
c = 1

2
ln(2 +

√
3). (4.1)

The system remains disordered down to zero temperature if
K∗ < K∗

c .

FIG. 2. Schematic. Range of K∗ in (3.16) corresponding to dif-
ferent ordered and disordered regions, with K∗

c = 1
2 ln(2 + √

3) =
0.6584 . . . and K∗

min = − 1
2 ln 2 = −0.3465 . . . . FM refers to the fer-

romagnetic ordered region. FD and NFD correspond to frustrated and
nonfrustrated disorder, respectively.

In order to study the nature of the disordered state, we
recall that a model of Ising spins with dimensionless pair
interactions K∗ on a honeycomb lattice (and zero field) can
be mapped on to a model of Ising spins with zero field and a
dimensionless pair interaction K = βJ2 on a kagomé lattice,
given by [77]

e4βJ2 = 2eK∗ − 1. (4.2)

For K∗ > 0, the right-hand side is greater than 1, and so J2

must be positive. This implies that the mapping is on to a
model of Ising spins on the kagomé lattice with ferromag-
netic interactions. Note that K∗

c defines a critical temperature
in the kagomé lattice model given by e4βcJ2 = 2eK∗

c − 1. For
0 < K∗ < K∗

c , T > Tc and the mapping is on to a kagomé
lattice ferromagnetic pair interaction model at a temperature
higher than the critical temperature. Thus the disorder is not
related to any geometric frustration. As shown in [59], ge-
ometric frustration leads to the perpendicular susceptibility
χ⊥ diverging as 1/T near zero temperature; the parameter
η0 ∝ limT →0[T χ⊥(T )] gives a measure of the degree of frus-
tration. For example, the kagomé triplet interaction model
Htriplet = −J3

∑
τ σiσ jσk , J3 < 0 and τ corresponding to all

elementary triangles in a kagomé lattice is clearly not geo-
metrically frustrated but still highly disordered with a large
residual entropy, consistent with η0 = 0. Note that η0 is also
zero for kagomé Ising model with nearest-neighbor ferromag-
netic interactions, which has long-range order below a critical
temperature. Above the critical temperature the system is dis-
ordered, and this is clearly not due to geometrical frustration.

On the other hand, for K∗ < 0, (4.2) shows that J2 must
be negative. Thus the mapping is on to a model of Ising
spins on the kagomé lattice with antiferromagnetic interac-
tions. Disorder in this case is related to geometrical frustration
(with finite η0) since the kagomé lattice contains elementary
triangles. Note that the transformation (4.2) limits the range
of K∗; namely, the minimum value is given by

K∗
min = −1

2
ln 2, (4.3)

which corresponds to βJ2 → −∞.
Thus the parameter K∗ in (3.13) can range from K∗

min to
values larger than K∗

c , depending on the parameter α. Figure 2
shows different ranges of K∗ as described above. For the
sake of completeness, the range −∞ < K∗ < K∗

N relates to
an ordered antiferromagnetic Néel state, where the zero field
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K∗
N (= −K∗

c ) is a Néel critical value. This range is safely below
the current range of interest for K∗, viz., K∗

N < K∗
min in Fig. 2.

B. Zero-temperature phase diagram

As was done for the ordered vs disordered domains, anal-
ysis of the zero-temperature limits of (3.16) under the L∗ = 0
condition allows one to obtain the boundary between the two
types of disordered regions, with and without frustration. In
the mappings of Sec. III, the Ising parameter K∗ is a function
of the lattice-gas parameters x, y and z. Therefore it will
be easier to consider the ground-state phase diagram of the
lattice-gas model in the ε2-ε3 plane first and then transform
it to the J2-J3 plane using the fluid-magnet correspondence.
This strategy was followed in Ref. [76], where it was found
that in the ground state, the lines α = 1.5 and α = 3 separate
the ordered from the disordered regions in the ε2-ε3 plane
as shown in Fig. 3(a). In the corresponding magnetic phase
diagram, the lines α′ = ±3 separate the ordered from the dis-
ordered regions in the J2-J3 plane, as shown in Fig. 3(b). Also,
the ground-state (reduced) magnetic field h/2|J2| can be con-
joined with the frustrated disordered region in Fig. 3(b). Using
the (3.9) definition α′ ≡ −J3/J2 and (4.4), the conjunction is
easily established above the J2 < 0 axis (second quadrant) to
be h/2|J2| = α′, 0 < α′ < 1 (h > 0), and below the J2 < 0
axis (third quadrant) as h/2|J2| = α′, −1 < α′ < 0 (h < 0).
We should emphasize that, unlike the ferromagnetic case,
the corresponding lattice-gas model lacks any physical in-
terpretation in the frustrated regime, but is used solely as a
mathematical tool.

Given that all of the first quadrant plus the region α > 3
in the second quadrant in Fig. 3(a) is ordered, we start by
considering the region α � 3 in the second quadrant, where
ε2 < 0 and ε3 > 0. In this case, the zero-temperature limit
corresponds to x → 0.

The present work is based on the recognition that the dis-
ordered phase in the region 0 < α < 3 can again be separated
into two distinct regions. Below we consider the two regions
separately, characterized by 1 < α < 3 and 0 < α < 1. We
will show that K∗(T → 0) is positive for 1 < α < 3, while
it is negative for 0 < α < 1. This implies that the α = 1 line
in the ε2 − ε3 plane separates frustrated disorder (FD) from
nonfrustrated disorder (NFD) in the J2-J3 plane.

Case I: 1 < α < 3

For 1 < α < 3, the quantity l given by (3.17) has the domi-
nant diverging term l ∼ 4x1−α as x → 0. This implies that l >

0, and therefore, using (3.16), K∗(T → 0) is positive. Note
that in this case there is no physical solution satisfying the null
condition L∗ = 0, since the existence of such a solution would
imply a long-range order. However, as long as K∗ < K∗

c , the
field L∗ goes to zero in the limit T → 0, as can be seen from
the zero-temperature limit of (A5), obtained in (D2). Thus the
ground state is disordered but without frustration, or NFD.

Case II: 0 < α < 1

On the other hand, for 0 < α < 1, the dominant term for l
at zero temperature is l → −3. It then follows that K∗(T →
0) is negative, and therefore J2 is also negative. The null

FIG. 3. Zero-temperature exact phase diagrams of (a) the lattice-
gas model, (b) the magnet model, and (c) the vertically dashed
region of (b) for α′ > 0, including the field h. In (a) and (b), the
ordered regions are unshaded, as obtained in Ref. [76]; the red lines
separate the ordered from the disordered regions. The nonfrustrated
disordered (NFD) regions are shaded by horizontal lines and are
characterized by 0 < K∗ < K∗

c . The frustrated disordered (FD) re-
gion K∗

min � K∗ < 0 is shaded by vertical lines. Established later is
the relation h = 2J3 in the vertically lined FD region of 3(b). The
blue lines separate the two distinct types of disordered regions. In
(c), the conditions h = 2J3 and L∗ = 0 are satisfied everywhere on
the ground-state (blue) surface.
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condition L∗ = 0 in this case is not a condition for long-range
order as in a ferromagnet [76], but provides a solution of
the model on a two-parameter subspace since it provides a
relationship among the three parameters x, y, and z. At zero
temperature, as shown in (C8), this is given by

h

2J3
= 1, T → 0. (4.4)

Thus, in the ground state, the L∗ = 0 condition is equivalent to
the condition h = 2J3. The condition also implies K∗ = K∗

min
(see Sec. VI), and this in turn implies that βJ2 → −∞. This
is true for either T → 0 and finite J2 or J2 → −∞ and finite
temperature. In either case, the ground state is disordered due
to frustration.

Using the fluid-magnet correspondence relations (3.11)
and (3.12), we see that for J2 < 0 and in terms of the pa-
rameter α′ = −J3/J2, the regime 0 < α′ < 1 corresponds to
frustrated disorder, while the regime α′ > 1 corresponds to
nonfrustrated disorder:

0 < K∗ < K∗
c , α′ > 1: NFD

K∗
min < K∗ < 0, α′ < 1: FD, (4.5)

where FD denotes frustrated disorder and NFD denotes non-
frustrated disorder.

Mathematically, the difference between disorder with and
without frustration manifests itself also in the corresponding
magnetic field L∗ in (3.13), which is real for K∗ > 0 but is
pure imaginary for K∗ < 0. The fact that L∗ is pure imaginary
for K∗ < 0 is known from the Wu theory [80], but it can also
be seen directly from the expression of L∗ given by (A5) in
Appendix A. This in turn affects the spin correlations and
therefore the magnetic response in the two cases. In particular,
when L∗ is pure imaginary, we show in Appendix B that
all zero-field odd-number correlations must vanish at zero
temperature in the associated honeycomb Ising model with its
even-number interactions.

Thus the line α′ = 1 separates the two types of disorder
in the second quadrant of Fig. 3(b). Moreover, using the in-
trinsic symmetry of the magnetic canonical partition function
Z (h, J2, J3) = Z (−h, J2,−J3), this implies that the line α′ =
−1 in the J2-J3 plane also separates the two types of disorder
in the third quadrant. Mapping back to the lattice-gas model,
this implies that the line α → ∞, i.e., the line separating the
third and the fourth quadrants, corresponds to the boundary
between the two types of disorder. In other words, the entire
third quadrant in the ε2-ε3 plane corresponds to K∗ < 0. Thus
the above analysis leads to the partitioning shown in Figs. 3(a)
and 3(b). In addition, the ground state in the FD region corre-
sponds to h = 2J3; Fig. 3(c) shows a 3D plot in the restricted
region J2 < 0 and 0 < α′ < 1, with h added as a third axis.

We note that according to Fig. 3(b), the limiting case of
Hpair in (II.1 a) with J3 = 0 and J2 < 0 is an example of
disorder due to frustration, while the limiting case of Htriplet

in (II.1 b) with J2 = 0 belongs to nonfrustrated disorder. As
shown in Ref. [59], the magnetic properties of these two
limiting cases are very different. In particular, the perpendic-
ular susceptibility diverges for the frustrated system while it
remains finite in the case of nonfrustrated disorder. Also, the
mean-field Curie-Weiss temperature is finite for the frustrated

FIG. 4. Exact solution for the crossover temperature Tcross (black
dots), obtained from numerical solution of (4.7) between frustrated
disorder FD and nonfrustrated disorder NFD, ranges from 0 to ∞ as
v ≡ e−4|J2 |/kBTcross ranges from 0 to 1. The red squares show the K∗ =
0 curve under the condition L∗ = 0. Here α′ ≡ −J3/J2 and t ′

cross =
kBTcross/2|J2|

model, while it is zero for nonfrustrated disorder. Moreover, as
shown in Appendix B, all zero-field odd-number correlations
vanish at zero temperature in the geometrically frustrated
region of the associated honeycomb Ising model. Thus the
two types of disordered states have very different magnetic
responses that should be experimentally observable.

C. Crossover at finite temperature

As mentioned before, the condition K∗ = 0 separates the
FD from NFD regime. From (3.16) and (3.17), K∗ is zero
when l = 0. We define

v ≡ [e− |ε2 |
kBTcross ]

1
1+α′ = e− 4|J2 |

kBTcross , (4.6)

where we used the relations (3.3) and (3.5) [see also (6.4)]
to obtain the second equality. In terms of v, using (3.17), the
condition l = 0 is given by

(1 − v)3(3 + v) = 16v sinh2

(
α′

2
ln v

)
. (4.7)

Numerical solution of this equation is shown in Fig. 4, the in-
set showing t ′

cross ≡ kBTcross/2|J2|. The black dots represent a
crossover boundary between K∗ < 0 and K∗ > 0, or between
FD and NFD. Observationally, this crossover temperature is
too high for small values of α′, although it should be experi-
mentally accessible for values of α′ close to 1.

We mention here that in the rest of the paper we will
consider exact results for magnetization and magnetic sus-
ceptibility, but only under the condition L∗ = 0. Under this
condition, K∗ becomes zero at a crossover temperature, which
is always smaller than the true crossover temperature obtained
from the l = 0 condition. Therefore, it has a limiting effect
on our ability to study the true crossover region. Because it
plays an important role in the limitation of our calculation,
we show the L∗ = 0 boundary in Fig. 4, with red squares. For
example, for α′ = 0.01, the actual crossover temperature is
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close to t ′
cross = 2000, while it is only about 300 within the

L∗ = 0 subspace as shown in the inset of Fig. 4. Thus, as
we will see later, the inverse susceptibility under the L∗ = 0
condition will diverge at the boundary determined by the red
squares, leaving us with no information near the true crossover
boundary (the black dots), except near α′ = 0 or 1 where the
two crossover temperatures coincide.

V. FRUSTRATED DISORDER IN THE L∗ = 0 SUBSPACE

As shown in Appendix C, the condition L∗ = 0 defines a
two-parameter subspace in the grand canonical fluid model
(3.1) with three parameters x = eβε2 , y = eβε3 , and z = eβμ,
where μ is the chemical potential. Using the fluid-magnet
correspondence relations (3.11), this defines a two-parameter
subspace in the three-parameter h, J2, and J3 space of the
canonical magnetic model (2.2). Many interesting physically
observable results, like the finite-temperature results for mag-
netization and magnetic susceptibility, can be obtained exactly
in this subspace. The caveat is that the magnetic field h is
no longer an independent parameter, but must be tuned to
guarantee the L∗ = 0 condition.

A. Ground-state properties

From Appendix C, Eq. (C8), h → 2J3, as T → 0. Thus in
the ground state, the L∗ = 0 condition is equivalent to the
condition h = 2J3. Moreover, the L∗ = 0 condition at zero
temperature secures the minimum of K∗, as shown in Fig. 14
for θ = 0. Combining the above results, we find that for the
limit T → 0, the L∗ = 0 condition is equivalent to h = 2J3

and K∗ = −(1/2) ln 2. In other words, if we start with a gen-
eralized kagomé Ising model

−Hk = 2J3

∑
i

σi − |J2|
∑
<i, j>

σiσ j + J3

∑
<i, j,k>

σiσ jσk, (5.1)

where we tuned the field h to be exactly equal to 2J3, then
the ground-state properties can be obtained from the standard
Ising model on the associated honeycomb lattice with zero
field,

−βH∗
hc = −1

2
ln 2

∑
<i, j>

μiμ j . (5.2)

The following simple considerations provide additional
insights into the L∗ = 0 subspace. We first decompose the
kagomé lattice into three (α, β, γ ) sublattices. Consider a
simple frustrated configuration, consisting of an entirety of
frustrated elementary triangles. More pertinently, consider
every elementary triangle in the kagomé lattice to have the
same frustrated spin configuration shown in Fig. 5. Then the
magnetic and the triplet interaction terms in (2.2) together can
be calculated to give the Zeeman plus the triplet energy:

−h
∑

i

σi − J3

∑
<i, j,k>

σiσ jσk

= −h

( ∑
α−sites

σα +
∑

β−sites

σβ +
∑

γ−sites

σγ

)

γ

γ

γ

γ

α

α α

β

ββ

β α

FIG. 5. Three-sublattice decomposition of a kagomé lattice,
showing one of the six possible ground states of a frustrated elemen-
tary triangle.

−J3

∑
<α,β,γ>

σασβσγ

= −
[

h
(N

3
− N

3
+ N

3

)
+ J3

(
−2

3
N

)]
= 0, if h = 2J3. (5.3)

Thus at h = 2J3, the Zeeman and the triplet energies cancel
exactly.

It then follows that all exactly known ground-state re-
sults in the one-parameter kagomé Ising antiferromagnet can
also be ascribed to the ground state of the current three-
parameter model. For example, the internal energy U for the
one-parameter model H1

k is obtained by

H1
k = −J2

∑
〈i, j〉

σiσ j, J2 < 0,

U = 〈
H1

k

〉 = −J2

(
N × 4

2

)
〈σ0σ1〉. (5.4)

The nearest-neighbor pair correlation 〈σ0σ1〉 is known [77] as
a function of temperature, which has the value −1/3 at zero
temperature. So, using (5.4), the ground-state binding energy
becomes

U0 = E0 = 2

3
NJ2, J2 < 0. (5.5)

The residual entropy S0, given a ground-state degeneracy
W0, is obtained by the Boltzmann formula S0 = kB ln W0 =
NkB ln w0 = NkB × 0.50183 . . . , using exact results from
[58]. Thus, for ln w0 ≈ 1/2, the number of degenerate states
is approximately W0 ≈ eN/2, where N = NA = 6 × 1023 is the
Avogadro number. This extremely large degeneracy is acci-
dental and hence cannot be lifted by “spontaneous symmetry
breaking.” These ground-state properties remain valid for our
three-parameter model (2.2) in the L∗ = 0 subspace, although
the excitations will be very different.
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FIG. 6. Dimensionless field h′ = h/2|J2| as a function of the
dimensionless temperature t ′ = kBT/2|J2| for α′(≡ −J3/J2 ) = 0.01,
showing that the two are no longer independent under the L∗ = 0
condition. The L∗ = 0 crossover temperature from FD to NFD is
t ′
cross ≈ 297.3.

B. Magnetization

We will define a dimensionless temperature t ′ and a dimen-
sionless field h′ as

t ′ ≡ kBT

2|J2| , h′ ≡ h

2|J2| . (5.6)

In addition, since the ground-state phase boundary is symmet-
ric in J3, we will consider J3 > 0 only.

The magnetization m is simply related to the density ρ in
the fluid representation by the correspondence relation m =
2ρ − 1, where the density, evaluated at L∗ = 0, is given by
(see [76])

ρL∗=0 = 2

3
z
∂ ln a∗

∂z
+ (〈μ0μ1〉 − tanh K∗)z

∂K∗

∂z
. (5.7)

Here a∗ appears in (3.14), and 〈μ0μ1〉, to be evaluated at L∗ =
0, is the nearest-neighbor pair correlation which is known
exactly in terms of complete elliptic integrals. Note that in the
NFD region K∗ > 0, so 〈μ0μ1〉 is positive, while in the FD
region K∗ < 0, so 〈μ0μ1〉 is negative. The logarithmic deriva-
tive of a∗ in (5.7) has been worked out in the Appendix of
[76]. Using these results, we can find the magnetization m as
a function of the temperature.

The important point to keep in mind is that within the
L∗ = 0 subspace, the condition imposed by the cubic al-
gebraic equation for the fugacity implies that the chemical
potential and the temperature in the fluid representation are no
longer independent variables. In the magnetic representation,
this implies that the field h′ and the temperature t ′ are not
independent on this subspace. Figure 6 shows h′(t ′) due to the
imposed L∗ = 0 condition, for a particular value α′ = 0.01.
Thus the magnetization m is no longer a function of two
independent variables h′ and t ′. In particular, magnetization as
a function of temperature alone is not a physically observable
function since the field itself changes with temperature, which
in turn affects the magnetization. On the other hand, since
both magnetization m(t ′) and the field h(t ′) are functions of

FIG. 7. Induced magnetization m as a function of the dimension-
less field h′ = h/2|J2| for α′ = 0.01, where α′ ≡ −J3/J2. Note that
since h′ is a function of dimensionless temperature t ′, each point on
the curve corresponds to a different temperature, as obtained from
Fig. 6.

temperature, the magnetization m(h(t ′)) as a functional of the
field h(t ′), plotted for each given temperature t ′, should remain
a physically observable function. Figure 7 shows magnetiza-
tion as a function of the dimensionless field h′ for α′ = 0.01;
this should offer insights into the magnetic properties of a
standard kagomé Ising antiferromagnet (α′ → 0) in the pres-
ence of a field. For larger values of α′, the magnetization
rises faster to full magnetization m = 1 as shown in Fig. 8.
It also shows a clear threshold at h′

th = α′ below which the
magnetization is zero, consistent with (4.4). Note that this
threshold value is an exact zero-temperature property.

The existence of the threshold has important consequences.
The fact that the magnetization does not change until the
external applied field h reaches a certain threshold value (h =
2J3) implies that the spectrum is gapped, the gap tending to
zero as J3 → 0. The magnetization starts to increase with

FIG. 8. Induced magnetization m as a function of the dimension-
less field h′ = h/2|J2| for different values of α′, showing the exact
threshold at h′

th = α′. The parameter α′ is defined as α′ ≡ −J3/J2.
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FIG. 9. Parallel magnetic susceptibility χ‖(h′) = ∂m/∂h′ as a
function of the dimensionless field h′ = h/2|J2| for α′ = 0.01, where
α′ ≡ −J3/J2. Note that h′ itself is a function of temperature in the
L∗ = 0 subspace, so this is not an isothermal susceptibility.

an infinite slope beyond the threshold value, resulting in a
divergence of the parallel susceptibility at zero temperature
(discussed next).

C. Magnetic susceptibility

Given the magetization vs field plot shown in Fig. 8, it
is possible to numerically evaluate the derivative and ob-
tain the parallel magnetic susceptibility as a function of the
dimensionless field h′ defined in (5.6). Figure 9 shows the
parallel magnetic susceptibility χ‖(h′) = ∂m/∂h′ as a function
of the dimensionless field h′ for α′ = 0.01. The suscepti-
bility diverges at the threshold value h′ = α′, showing that
in the plot m vs h′ in Fig. 8, the magnetization m hits
the h′ axis with a perpendicular slope at zero temperature.
Since both the magnetization and the field are functions
of temperature in the L∗ = 0 subspace, we can obtain the
temperature-dependent parallel susceptibility by considering

FIG. 10. Parallel magnetic susceptibility χ‖(t ′) = ∂m(t ′ )
∂h(t ′ ) = ∂m/∂t ′

∂h/∂t ′
as a function of the dimensionless temperature t ′ = kBT/2|J2| for
α′ = 0.01 (α′ ≡ −J3/J2).

FIG. 11. Inverse parallel magnetic susceptibility [χ‖(t ′)]−1 as a
function of dimensionless temperature t ′ = kBT/2|J2| for α′ = 0.01
(α′ ≡ −J3/J2). The L∗ = 0 crossover temperature for α′ = 0.01 is
t ′
cross ≈ 297. (See higher resolution near origin in accompanying

Fig. 12.)

∂m(t ′ )
∂h′(t ′ ) = ∂m/∂t ′

∂h′/∂t ′ . Figure 10 shows the susceptibility χ‖(t ′) for
α′ = 0.01.

Note that the highest temperature is limited by the L∗ =
0 crossover boundary Tcross between FD and NFD, shown in
Fig. 4. Defining

t ′
cross = kBTcross

2|J2| , (5.8)

the crossover temperature at α′ = 0.01 is t ′
cross ≈ 297. This is

reflected in the divergence of the field at that temperature in
Fig. 6.

While the high-temperature behavior is complicated by
the FD-NFD crossover boundary, the susceptibility shows a
Curie-Weiss behavior at temperatures well below the L∗ = 0
crossover temperature, of the form 1/(T + T0), T0 being a
constant. This is more clearly visible if we plot the inverse
susceptibility [χ‖(t ′)]−1, which is linear in T but with a finite
positive value at T = 0. Figure 11 shows the inverse suscepti-
bility for α′ = 0.01.

Figure 12 shows a rough straight line interpolation from
“high” (but well below the L∗ = 0 crossover) temperature giv-
ing a Curie-Weiss temperature �CW ≈ 2 in units of 2|J2|/kB.
This should be compared with the predicted value [59]
�KIA

CW = 2 for the kagomé Ising antiferromagnet (α′ → 0). We
emphasize that unlike a standard antiferromagnet, the range
of linear temperature exists only to an intermediate extent, the
high-temperature part clearly deviating from a linear behavior
due to the existence of the crossover boundary beyond which
there is no frustration. Moreover, as α′ is increased, the L∗ = 0
crossover temperature decreases and the range over which the
inverse susceptibility is linear becomes progressively smaller.
For example, for α′ = 0.1, 0.25, 0.5 and 0.75, the L∗ = 0
crossover temperature is t ′

cross ≈ 27.34, 9.35, 3.34, and 1.28,
respectively. Thus estimating �CW as a function of α′ from
a fitting of the small linear temperature range becomes un-
reliable. Nevertheless, even though no attempt was made to
obtain an accurate estimate of the magnitude of �CW , a trend
was seen for α′ � 1, namely, that the value of �CW decreases
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FIG. 12. Inverse parallel magnetic susceptibility [χ‖(t ′)]−1 as a
function of dimensionless temperature t ′ = kBT/2|J2| for α′ = 0.01
(α′ ≡ −J3/J2), showing a rough linear fit (red dashed line) up to
t ′ = 50 (well below the L∗ = 0 crossover temperature t ′

cross ≈ 297),
leading to an approximate Curie-Weiss temperature �CW ≈ 2 in
units of 2|J2|/kB.

as α′ increases. For example, Fig. 13 shows the result for
α′ = 0.1, where �CW (α′ = 0.1) is found to be smaller than
�CW (α′ = 0.01) shown in Fig. 12.

VI. FRUSTRATED DISORDER BEYOND L∗ = 0

The term L∗ in (3.13) can be considered as an effective
one-particle potential that depends not only on the parameters
h, J2, and J3 of the original Hamiltonian (2.2) but also on tem-
perature T . The results presented above are valid in the L∗ = 0
subspace where the field h is not an independent parameter
but is tuned to satisfy the L∗ = 0 condition. In this section we
study the possibility if the solutions for L∗ = 0 can be used to
explore the region L∗ �= 0. We show that a hybrid variable u,

FIG. 13. Inverse parallel magnetic susceptibility [χ‖(t ′)]−1 as a
function of dimensionless temperature t ′ = kBT/2|J2| for α′ = 0.1
(α′ ≡ −J3/J2). A rough linear fit (red dashed line) up to t ′ = 10
(well below the L∗ = 0 crossover temperature t ′

cross ≈ 27) leads to an
approximate Curie-Weiss temperature �CW < 2 in units of 2|J2|/kB.

defined in terms of the fluid parameters as u ≡ x2z, plays an
important role beyond the L∗ = 0 subspace.

We first rewrite u in terms of the magnetic parameters:

u ≡ x2z = e2βε2(1+ μ

2ε2
)
. (6.1)

Correspondence relations (3.11) and (3.12) give

μ

ε2
= 1

1 + α′

[
h

2J2
− 2 − α′

]
. (6.2)

Thus

ln u = 2βε2

(
1 + μ

2ε2

)
= βε2

(1 + α′)
1

2J2
(h − 2J3). (6.3)

Now use K2/4 = K − M from (3.5) to obtain

βε2 = 4βJ2(1 + α′), (6.4)

which finally gives

u ≡ x2z = e2(h−2J3 )/kBT . (6.5)

Thus h = 2J3, which corresponds to L∗ = 0 at zero tem-
perature, is equivalent to u = 1. Only for this value of u,
V/U in (D3) is zero, consistent with L∗ = 0. Note that (6.4)
can be used to write x in terms of magnetic variables, x ≡
e−|ε2|/kBT = e−4|J2−J3|/kBT .

The honeycomb “dressed” parameters L∗ and K∗ are
clearly interrelated. It turns out that in the low-temperature
region both K∗ [given by (3.16)] and f = tan θ [given by
(A7)], where L∗ = iθ , become functions of the single variable
u:

K∗(x1−α � 1) = 1

4
ln

[
1 − 3u

(u + 1)2

]
,

tan θ (x � 1) = 1 − 2u + s

1 + s

√
1 + u + s

1 + u − s
, (6.6)

s ≡
√

1 − u + u2.

It is then possible to obtain a direct relationship between K∗
and θ at low temperatures by eliminating u. Figure 14(a)
exhibits such a relationship evidencing a parabolic minimum
at θ = 0, K∗ = K∗

min = − 1
2 ln 2 = −0.3465 . . . (see Fig. 2),

and showing symmetric side-wings with tips at θ = ±π/2 =
±1.5707 . . . radians. For comparison, we also show the low-
temperature expressions for K∗ vs u and tan θ vs u using
(6.6). The region around the minimum of K∗ near θ = 0 in
Fig. 14(a) corresponds to |u − 1| � 1.

The hybrid variable u thus offers a possible approach to
the region L∗ �= 0, starting from the known results for L∗ = 0
which defines a subspace h(T ) given in (C7) for x � 1. Fig-
ure 14(c) suggests that for small deviation from L∗ = iθ = 0
in the region x � 1, we expand tan θ ≈ θ around u = 1. Us-
ing (6.6) this gives θ ≈ (−3

√
3/4)(u − 1) or u ≈ e−4θ/3

√
3.

Comparing with (6.5), this implies that we tune the field h
such that

h = 2J3 − 2kBT

3
√

3
θ ; u = e− 4

3
√

3
θ
, x � 1, |θ | � 1. (6.7)

This defines a subspace h(T ) for L∗ �= 0, which coincides with
the L∗ = 0 subspace as T → 0. Experiments in the laboratory
can probe such subspaces by sweeping either the magnetic
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FIG. 14. (a) K∗ vs θ (radians), where L∗ = iθ , in the FD domain
and low-temperature region x � 1. The ground state corresponds
to the bottom of the well with L∗ = 0, i.e., θ = 0. The region near
the bottom of the well corresponds to a magnetic field h such that
2|h − 2J3| � kBT . In terms of the hybrid variable u = e2(h−2J3 )/kBT ,
this corresponds to |u − 1| � 1. Panels (b) and (c) show K∗ and tan θ

vs u, respectively, where the dashed lines correspond to u = 1.

field h or temperature T or both, always satisfying (6.7). It
should therefore be possible to obtain insights into the L∗ �= 0
region by developing a perturbation theory around L∗ = 0, the
minimum of K∗, with |θ | � 1 as the small parameter.

As discussed earlier, L∗ = 0 is a condition among the
three parameters J2, J3, and h in (2.2) so that only two of
them can be varied independently. In other words, it defines a
two-parameter surface in the three-dimensional space spanned
by the three parameters. Figure 3(c) shows an example of
such a surface at zero temperature. In Sec. V we obtained
accurate results for magnetization and susceptibility for the
three-parameter model (2.2), but valid only for points on
the particular surface defined by the condition L∗ = 0. The
discussion above shows that it should be possible to extend
those results to other points beyond the L∗ = 0 surface, albeit
only within a perturbation theory valid for points close to the
L∗ = 0 surface.

VII. SUMMARY AND DISCUSSION

The exact solutions for an Ising antiferromagnet on a
kagomé lattice with either purely nearest-neighbor pair in-
teractions or purely triplet interactions as given in (2.1) are
known separately. They provide insights about the role of
geometrical frustration vs nonfrustrated disorder in the de-
struction of long-range order in classical spin systems. In this
work, we solve an Ising model when both pair and triplet
interactions are combined, exploring the interplay of disorder
with and without frustration. The mathematical trick we use is
to add a magnetic field, making it apparently a more difficult
three-parameter model; but this allows an exact mapping on
to a standard honeycomb Ising model with pair interaction K∗
and a finite field L∗, with no triplet interaction. The mapping is
via a lattice-gas model in a grand canonical ensemble in which

the chemical potential relates to the magnetic field. While
the general three-parameter kagomé Ising antiferromagnetic
model remains unsolvable for magnetization and magnetic
susceptibility, it develops that solutions can be determined on
a two-parameter subspace, given by the condition L∗ = 0.

Within the two-parameter subspace, a projection of the
finite temperature results on to zero temperature J2-J3 plane
allows us to obtain the exact zero-temperature phase diagram
shown in Fig. 3(b). It shows that the disordered phase has two
distinct regions. The horizontally shaded regions in Fig. 3(b)
correspond to nonfrustrated disorder (NFD), because the pair
interaction K∗ in the standard Ising model on the associated
honeycomb lattice is positive (ferromagnetic). On the other
hand, the vertically shaded region corresponds to frustrated
disorder (FD), with K∗ < 0. We expect the magnetic proper-
ties of these two regions to be qualitatively different, since
all zero-field odd-number spin-correlations must vanish for
K∗ < 0 as shown in Appendix B. Indeed, as shown in [59], the
perpendicular susceptibility χ⊥ on the line J3 = 0, J2 < 0,
which belongs to the FD region, diverges as T → 0 while χ⊥
remains finite along the line J2 = 0, which belongs to the NFD
regime.

It turns out that the L∗ = 0 condition also allows exact
solutions for magnetization and parallel magnetic suscepti-
bility on the two-parameter subspace. The magnetization as
a function of the field h shows a threshold at h = 2J3, which
implies a gapped spectrum for the three-parameter model. The
parallel magnetic susceptibility shows the expected Curie-
Weiss behavior. Note that the α′ → 0 limit corresponds
to the “pure” (J3 = 0) kagomé Ising antiferromagnet in
a field.

While we restrict our calculations to the L∗ = 0 subspace
only, we argue that the results beyond the subspace should
be qualitatively similar when L∗ is a small perturbation. In
particular, the ground-state phase diagrams as well as the
existence of a gapped spectrum in the presence of J3 should
remain valid. We argue that it should be possible to develop a
systematic perturbation theory around L∗ = 0 in terms of the
hybrid variable u = e2(h−2J3 )/kBT with |u − 1| � 1.

As mentioned in the Introduction, triplet interactions in
geometrically frustrated systems are not ubiquitous, although
they might be present as a small perturbation to a dominant
pair interaction. Unfortunately, the crossover from FD to NFD
at zero temperature happens only at triplet interactions that are
equal in magnitude to the pair interaction. However, we also
find that a disordered system which is geometrically frustrated
at zero temperature can become nonfrustrated at some higher
temperature, given in Fig. 4. For the pure pair interaction this
happens only at T → ∞, but in a system with a small but
finite J3 the crossover temperature could be experimentally
accessible.

We have considered the addition of triplet interactions be-
cause a kagomé magnet with solely triplet interactions leads
to a nonfrustrated disordered ground state [59]. We expect
that any other model that leads to a similar ground state (per-
haps including long-range interactions like RKKY; see, e.g.,
[81]) should lead to a similar phase diagram when added to
the kagomé antiferromagnet with pair interactions. Our exact
results should provide insights and guidance into the role of
frustration in such models as well.
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APPENDIX A: GEOMETRICAL FRUSTRATION AND PURE
IMAGINARY L∗

The expressions for L∗ and a∗ in (3.14), as given in [76],
are

tanh L∗ = V

U

(
δ − A + C

δ + A − C

)1/2

,

e2K∗ = δ

|C − A| , a∗ = FU

B(1 + η2)3/2
, (A1)

A = c2 − bd, B = ad − bc, C = ac − b2,

η = −A + C

B
+ δ

B
sgn(C − A),

δ = [(A + C)2 + B2]
1
2 , F = η(Bη + 2C), (A2)

U = (b + d )η + a + c,

V = (a + c)η − (b + d ),

the vertex weights a, b, c, d being

a = x3yz3/2, b = xz, c = √
z, d = 1, (A3)

where x, y, and z are defined in (3.8).
The sign of the quantity C − A is important as it appears in

the expression for tanh L∗. We have

C − A = ac − b2 − c2 + bd = z[(xy − 1)x2z − 1 + x]
(A4)

with y = x−α . The sign of C − A is known to be positive for
ferromagnetic interaction K∗ > 0, as shown in [76]. For the
present case of antiferromagnetic interaction K∗ < 0, in the
zero-temperature limit x → 0 and for α < 1 in the FD region,
we get C − A → z[−x2z − 1] < 0, which agrees with the Wu
theory [80]. Then the expression for L∗ can be written as

tanh L∗ = V

U

(
e2K∗ + 1

e2K∗ − 1

)1/2

. (A5)

For K∗ < 0 and finite, 0 < e2K∗
< 1 and the square root is

pure imaginary. Thus one can write

L∗ = arctanhi f = i arctan f ≡ iθ, (A6)

yielding f = tan θ , where

f ≡ V

U

(
1 + e2K∗

1 − e2K∗

)1/2

. (A7)

APPENDIX B: GEOMETRICAL FRUSTRATION AND
VANISHING OF ODD-NUMBER CORRELATIONS IN THE

ASSOCIATED HONEYCOMB ISING MODEL

As shown in Appendix A, L∗ = iθ is pure imaginary in FD
domain: K∗

min � K∗ < 0, K∗
min = − 1

2 ln 2. We then have (here
K∗

− means K∗ in the FD domain)

Z∗(L∗, K∗) = Z∗(iθ, K∗
−) =

∑
{μl }

eK∗
−

∑
<i, j> μiμ j+iθ

∑
k μk ,

(B1)

eiθμl = cos θ + i(sin θ )μl , μl = ±1

= (cos θ )[1 + i(tan θ )μl ], (B2)

eiθ
∑

k μk =
N ∗∏
k=1

eiθμk = (cos θ )N
∗ {[1 + i(tan θ )μ1]

× [1 + i(tan θ )μ2] · · · [1 + i(tan θ )μN ∗ ]}
= (cos θ )N

∗ {1 − (tan θ )2
∑
pairs

μiμ j + (tan θ )4

×
∑

quartets

μiμ jμkμl + +i[(tan θ )
∑

i

μi · · ·

−(tan θ )3
∑

triplets

μiμ jμk + · · · ]}. (B3)

Therefore, using (3.4) and (3.14),

e(L−2K+2M/3)N Z (L, K, M )

= (a∗/2)N
∗
(cosh K∗

−)−3N ∗/2

×
∑
{μl }

eK∗
−

∑
<i, j> μiμ j {1 − (tan θ )2

∑
pairs

μiμ j + · · ·

+ i[(tan θ )
∑

i

μi − · · · ]}. (B4)

Aside from the real prefactor, the imaginary contribution from
the latter expression may be written as

i
∑
{μl }

eK∗
−

∑
<i, j> μiμ j

[
(tan θ )

∑
i

μi − (tan θ )3

×
∑

triplets

μiμ jμk + · · ·
]

= iZ∗(0, K∗
−)

[
(tan θ )

∑
i

〈μi〉0

−(tan θ )3
∑

triplets

〈μiμ jμk〉0 + · · ·
⎤
⎦. (B5)

The subscript 0 on thermal averages indicates their evalua-
tion at θ = 0, i.e., in the ground state (T = 0) of FD region
(see Fig. 14). Since Z (L, K, M ) itself is manifestly real,
the r.h.s. imaginary contribution must vanish, i.e., all above
odd-number correlations vanish identically, the latter being a
well-known criterion for disordered Ising systems having only
even-number interactions.

APPENDIX C: FD: THE L∗ = 0 SUBSPACE AS T → 0

In the ferromagnetic case as shown in [76], L∗ = 0 is a
necessary condition for long-range order. In the present case
there is no long-range order, and in addition L∗ is pure imag-
inary (see Appendix A). Nevertheless, the condition L∗ = 0
still leads to the same cubic equation for the fugacity z as in
the ferromagnetic case [76],

z3 + a2z2 + a1z + a0 = 0, (C1a)

with real coefficients

a2 = 3(x2y − 2xy + 1)

x3y(x3y2 − 3xy + 2)
, (C1b)

a1 = − 3(x2y − 2x + 1)

x5y(x3y2 − 3xy + 2)
, (C1c)
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a0 = − (x3y − 3x + 2)

x6y(x3y2 − 3xy + 2)
. (C1d)

This defines a two-parameter subspace in the three-
parameter space of (x, y, z), or equivalently (μ, ε2, ε3).

Using the relation y = x−α , the real solution of the cubic
equation depends on the parameter α. In the frustrated regime
where α < 1, the discriminant

D = Q3 + R2 < 0, (C2)

with Q ≡ (3a1 − a2
2)/9, R ≡ (9a1a2 − 27a0 − 2a3

2)/54.
While there are three inequivalent real solutions, the one
positive solution is given by

z = (R +
√

D)1/3 + (R −
√

D)1/3 − a2

3

= 2
√

−Q cos

(
π − φ

3

)
− a2

3
, (C3)

with cos φ = −R/
√

−Q3. This defines a relationship among
the fluid parameters x, y, and z due to the added condition
L∗ = 0. As T → 0, or equivalently x → 0,

φ →
√

3x1−α; cos

(
π − φ

3

)
→ 1

2
(1 + x1−α ),

√
−Q → 1

2

1

x3−α

(
1 + 1

2
x1−α

)
, (C4)

a2 → 3

2

1

x3−α

(
1 − 1

2
x1−α

)
.

Combining all, the fugacity (C3) becomes

z = 1

x2

(
1 + 8

3
x1−α

)
+ · · · , x � 1, (C5)

which is equivalent to

μ

|ε2| = 2 + 8

3

kBT

|ε2| e−(1−α)|ε2|/kBT + · · · , x � 1. (C6)

Using the fluid-magnet correspondence relations (3.11) and
(3.12), this implies

h

2J3
= 1 + 2

3

kBT

J3
e−4(1−α′ )|J2|/kBT + · · · , x � 1. (C7)

In the zero-temperature limit, z → 1
x2 , x → 0,

x2z → 1,
μ

|ε2| → 2,
h

2J3
→ 1, as T → 0. (C8)

APPENDIX D: LIMITS L∗(T → 0): FD vs NFD

As seen from (A7), for any K∗ �= 0, whether L∗ is zero or
not will depend on the ratio V/U . Using definitions of (A1)–
(A3), and for 1 < α < 3, one obtains C − A > 0 and

V

U
= ηγ − 1

η + γ
, γ = a + c

b + d
. (D1)

In the NFD region [see Fig. 3(a)], a finite K∗, given by (3.16),
exists in the T → 0 limit only if w ≡ x3−αz remains finite.
Then

η(x → 0) → −1

2
xz1/2, γ → 1 + w

xz1/2
,

V

U
→ −3 + w

1 + w
xz1/2 → 0, as T → 0. (D2)

This implies that L∗ → 0 as T → 0 for any finite w in this
NFD region.

On the other hand for α < 1, i.e., C − A < 0, a nontrivial
finite (and negative) K∗ exists in the zero-temperature limit
only if the hybrid variable u ≡ x2z remains finite. In this FD
region, as T → 0,

η(x → 0) → (1 − u) + √
1 − u + u2

√
u

, γ → 1√
u

V

U
→ 1 − 2u + √

1 − u + u2

1 + √
1 − u + u2

, (D3)

where the latter ratio is zero only if u = 1.
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