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Abstract

We present a review of the role of hierarchical relaxation processes on the dynamics of
geometrically frustrated systems and specifically the low temperature dynamics of the
glass states of solid ortho-para hydrogen, orientational and quadrupolar glasses, and
solid N2–Ar mixtures. Comparison is made with the dynamics observed for the recently
discovered Bose glass states.

1. Introduction

This contributed article is dedicated to John R. Sabin whose wisdom

and sound common sense have been very influential on many occasions.

Several years ago, researchers were struggling to understand the dynamical

behavior observed in the quadrupolar glass state of solid ortho-para hydro-

gen mixtures for which the local ordering was that of an ensemble of quan-

tum rotors. Jack’s advice was to reduce the problem to its simplest terms and

then look for the underlying physics. This advice resulted in treating the

dynamics as a hierarchical process in which low energy states in a complex
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configurational space must be accessed before higher energy states. This

approach was able to explain a range of experimental data and was recently

invoked to describe the anomalous frequency dependence of the dynamics

of a frustrated Bose glass. In this review, we will sketch the progress in

understanding the basic features of the relaxational dynamics of three frus-

trated molecular systems: the quantum rotor glass, the classical orientational

glasses, and the simple Bose glass state.

2. The frustrated molecular glass

Of all the molecular glasses, the quadrupolar glass1–12 formed at low

temperatures by dilute mixtures of ortho- and para-hydrogen13–18 is the

most fascinating as the underlying physics is quantum mechanical. The

homonuclear diatomic hydrogen can exist as one of two possible species,

ortho and para, determined by symmetry. The molecular wave function

is the product of a rotational wave function Φorb( J), determined by the

angular momentum J, and a nuclear wave function χnucl(I), determined

by the total nuclear spin I which can be 1 or 0. The full wave function

Ψ ¼ Φorb( J)χnucl(I ) must be totally antisymmetric. Consequently, ortho-H2

must have odd values of J and para-H2 even values of J, as shown in Table 1.

Because of the smallmoment of inertia, the rotational energies for a hydro-

gen molecule, EJ ¼ BJ( J + 1) with B ¼ 85.6 K19 have a large separation:

EJ¼1 ¼ 171 K and EJ¼2 ¼ 510 K compared to the ground state J ¼ 0. In

the solid state, we therefore need only consider J ¼ 1 and J ¼ 0. The aniso-

tropic interactions that can mix the J¼ 1 and J¼ 0 states (principally electro-

static quadrupole–quadrupole interactions20,21) are very weak (typically

�1 K) and J may be considered as a good quantum number. Furthermore,

the conversion of the ortho species (J¼ 1) to the para species (J¼ 0) is doubly

forbidden because two different symmetries (nuclear and rotational) must be

broken simultaneously. The ortho-para conversion rate is therefore very slow

(�1.9% per hour22,23) and a solid mixture of ortho-para hydrogen will decay

very slowly (over a few days) to the pure para state.

Table 1 Symmetry states of nuclear spin species of H2.
ortho-H2 para-H2

χnucl Even, I ¼ 1 Odd, I ¼ 0

Φorb Odd, J ¼ 1, 3, 5… Even, J ¼ 0, 2, 4…
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Only the ortho species (J ¼ 1) has orientational degrees of freedom. In

the absence of dipolar interactions the dipole moments Jα are expected to

vanish for α ¼ x, y, z. The five remaining degrees of freedom are in general

determined by the expectation values of the operator Tlm, which are the

operator equivalents of the spherical harmonics Ylm in the manifold J ¼ 1.

Five parameters are needed to fully specify all the degrees of freedom and

we consider two quadrupolar order parameters

σi ¼ ð3J2z � 2Þ
i
and ηi ¼ ðJ2x � J2yÞi (1)

for a molecule at site i, with three principal axes xi, yi, zi for the quadrupole

moments.

At high ortho-H2 concentrations, a first-order phase transition occurs

from a rotationally disordered state with σi ¼ 0 and ηi¼ 0 to an orientation-

ally ordered state at low temperatures. In this orientationally ordered state,

the molecules are arranged in an interpenetrating four-sublattice Pa3

structure for which the molecular alignment in each sublattice is along

one of the diagonals of a face-centered cubic lattice. This results in a

geometrically frustrated system as expected from an orientational ordering

driven by electrostatic quadrupole–quadrupole interactions. (For a review

see van de Bund and Ackland.21)

The ordered state is geometrically frustrated because the geometrical

alignment of nearest-neighbor molecules does not minimize the short-

ranged quadrupole–quadruple interaction for an isolated pair of molecules.

Diluting the ortho concentration weakens the orientational ordering and

below a critical concentration of about 55%, long range ordering is lost,

and the low temperature state is observed to be that of a broad distribution

of local order parameters and local axes for the mean alignment at each site as

illustrated in Fig. 1.

Some insight into the nature of this order–disorder transition can be

obtained from simple molecular field theory.18 If we assume axial symmetry

and a given mean local order parameter

σ ¼ 1

N

X
i

h3J2zi � 2i (2)

we need to evaluate the free energy

FðσÞ ¼ EðσÞ � TSðσÞ (3)
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where S(σ) is the entropy for fixed σ. We thenminimize F(σ) with respect to
σ to find the temperature dependence of σ.

The single particle density matrix can be written as

ρ ¼ 1

3
I3 +

X
m

T
{
2mhT 2mi (4)

where I3 is the unit 3� 3 matrix andT2m are the quadrupole operators. (The

dipole terms vanish.) With the assumption of axial symmetry, ρ reduces to

ρ ¼ 1

3
I3 + T 20hT 20i: (5)

In the manifold J ¼ 1, the ortho-normalized tensor operator is given by

T 20 ¼ 1ffiffiffi
6

p ð3J2z � 2Þ: (6)

The density matrix becomes

Fig. 1 Schematic representation of a quadrupolar glass as a distribution of prolate and
oblate ellipsoids with random directions of principal axes. After Fig. 4 of Sullivan, N. S.;
Devoret, M.; Cowan, B. P.; Urbina, C. Evidence for Quadrupolar Glass Phases in Solid
Hydrogen at Reduced Ortho Concentrations. Phys. Rev. B 1978, 17 (12), 5016–5024,
https://doi.org/10.1103/PhysRevB.17.5016.
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ρ¼

1

3
+
σ

6
0 0

0
1

3
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3
0

0 0
1

3
+
σ

6

266666664

377777775
where the rows and columns are for Jz ¼ 1, 0, �1.

The entropy is given by

SðσÞ ¼ Trðρ ln ρÞ (7)

which becomes

SðσÞÞ¼ 1

3
½ð2+ σÞ lnð2+ σÞ+ ð1�σÞ lnð1�σÞ

�ð2+ σÞ ln2�3 ln3�:
(8)

The intermolecular quadrupolar interaction between two molecules at sites

i and j can be written as

H QQ
ij ¼

X
m, n

Γmn
ij T

2m
i T 2n

j (9)

where the T2m are the tensorial operators introduced previously and Γm,n
ij are

interaction constants that depend on the orientations of the local symmetry

axes, which are well known for the Pa3 structure.

The quadrupolar interaction varies with molecule separation as r�5
ij so we

need only consider the mean energy for nearest neighbors. This energy is

found to be

hHQi ¼ 6X γσ2 (10)

where γ measures the interaction strength and X is the ortho-H2 fraction.

The total free energy per particle is

FðσÞ ¼ 1

3
kBT ½ð2 + σÞ ln ð2 + σÞ + ð1� σÞ ln ð1� σÞ � σ ln 2� +6Xγσ2: (11)

F(σ) is minimized for values of σ that satisfy

36Xjγjσ
kBT

¼ ln
ð2 + σÞ
ð2� 2σÞ : (12)
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For low temperatures the solution is σ0¼�2, and as T increases, σ increases
toward the value of �1 and then has a discontinuous jump to σ ¼ 0 at a

critical temperature

TC ¼ 18jγjX
kB ln 2

: (13)

While this mean-field approach demonstrates the first-order nature of the

transition, it is only in qualitative agreement with the observed phase diagram

(Fig. 2). It does not explain the origin of the critical concentration below

which the glass state appears and the numerical values of Tc are too high.

The first attempt to provide an understanding of the physics responsible

for the critical concentration was provided by Kirkwood’s method24,25 of

restricted traces carried out to second order. Kirkwood’s method is impor-

tant for the case of quantum rotors because it includes the contributions of

correlation terms of the form

hT2mT 2ni: (14)

To first order, Kirkwood’s method reproduces the mean field result. The

second cumulant of Kirkwood’s treatment limited to the isotropic terms

m, n ¼ 0 yields

Cubic
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Long range
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m
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Fig. 2 Phase diagram observed for solid-ortho-para hydrogen mixtures. The hatched
region indicates a smooth growth of orientational order into the quadrupolar glass state.
After Fig. 5 from Sullivan, N. S.; Hamida, J. A.; Pilla, S.; Muttalib, K. A.; Genio, E. Molecular
Glasses: NMR and Dielectric Susceptibility Measurements. J. Struct. Chem. 2016, 57 (2),
301–307, https://doi.org/10.1134/S0022476616020098.
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M2 ¼ H 2
QQ

D E
� H QQh i2

¼ 6N X2γ2ð2� σ � σ2Þ½2� σ � ð2X � 1Þσ2�:
(15)

From this expression, we see that the correlation term changes sign for

X < 0.5. Detailed calculations that include the anisotropic terms25 put the

critical concentration closer to 55%.

One can use a simple model of a broad distribution of interaction

strengths to describe the quadrupolar glass state.18 Consider the truncated

version of Eq. (9)

H ij ¼
X
ij

ΓijT20ðiÞT 20ðjÞ (16)

where there is a Gaussian distribution of possible values for the Γij given by26

PðΓijÞ ¼ 1

2πeΓ2

� �1=2

exp ½�ðΓij � Γ0Þ2=2eΓ2�: (17)

Γ0 is the mean value of the interaction and eΓ2
is the variance. One can now

follow the technique of Edwards and Anderson to calculate the free energy

by taking an average over an ensemble of n replicas.

F ¼ �kbT lim
n!0

1

n
ðZn � 1Þ

h i
: (18)

The quadrupolar order parameter is defined as

Q ¼ hðT 20ÞμÞðT 20Þνi: (19)

μ and ν refer to different replicas and the bar represents a configurational

average. The local molecular alignment is σ ¼ hT 20i.
Minimizing F with respect to Q and S, yields

σ ¼ 1

2π

� �1=2
Z

e
1
2
y2FðξÞdy (20)

and

Q ¼ 2� σ � 1

2π

� �1=2
Z

e
1
2
y2F

0 ðξÞdy (21)

with
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FðxÞ ¼ 2ex � 2e�2x

2ex + e�2x
(22)

and

ξ ¼ 1

kBT
eΓðzQÞ1=2y + Γ0zσ
h i

(23)

where z is the number of nearest neighbors.

If eΓ ¼ 0, one recovers the mean field results

Q ¼ 2� σ (24)

and

kbTc ¼ 36Γ0= ln
2 + σ
2 + 2σ

h i
: (25)

On the other hand, for eΓ≫ Γ0

Q ¼ 5

2
� 27

2
eB

2

er f cðBÞ (26)

with

B ¼ 3eΓ zQ=2ð Þ1=2: (27)

On expanding the error function, one finds a nontrivial Q for

kbTg ¼ 5

27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5πz
3

� �r eΓ ¼ 0:4z1=2eΓ: (28)

On estimating eΓ by averaging over the angle dependent constants in the

electrostatic quadrupole–quadrupole interaction constant one finds for the

estimated glass transition18

Tg ¼ 0:7x1=2 (29)

which is quite close to the reported values.

The phase diagram was deduced from NMR studies15,16,27,28 where the

NMR line shapes provide a direct measurement of the local order param-

eters. This property results from the intramolecular nuclear dipole–dipole
interaction which in the manifold J ¼ 1 can be written as

HDD ¼ hDð3I2Z � 2Þσið3 cos 2θi � 1Þ (30)

whereD is a constant, σi is the molecular order parameter, and (θi, ϕi) define

the polar angles for the orientation of the applied magnetic field with respect

8 N.S. Sullivan et al.
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to the local symmetry axes. (For simplicity we assume axial symmetry with

ηi ¼ 0 for all i.) Each molecule contributes a doublet to the NMR spectrum

at frequencies

Δf i ¼ �3Dσið3 cos 2θi � 1Þ: (31)

For a fixed value of σi one can sum over the polar angles for a powder sample

and one obtains the familiar Pake doublet line shape with two pronounced

peaks separated by 6Dσi. The NMR results were very clear in showing that

both the local order parameters σi and the local axes vary widely in the glass

state as represented schematically in Fig. 1. At low temperatures (T< 0.2 K)

and low ortho concentrations (X < 0.4), the observed NMR line shapes

correspond approximately to a linear probability distribution of order

parameters

PðσÞ∝ σ: (32)

This linear dependence at small σ is expected since the expression for the

entropy is quadratic in σ for small values (Fig. 3).
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A
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Fig. 3 Fit to the observed NMR line shape at very low temperatures (T ¼ 44 mK) for a
distribution P(σ) of local order parameters σ. There is a small but distinct asymmetry to
the line shape and this is due to the nonnegligible nuclear spin polarization (�6%) at
these temperatures. After Fig. 8 from Edwards, C. M.; Zhou, D.; Lin, Y.; Sullivan, N. S. Local
Ordering in Dilute Ortho-Para-Hydrogen Mixtures at Low Temperatures. J. Low Temp. Phys.
1988, 72 (1/2), 1–24, https://doi.org/10.1007/BF00681725.
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The hashed area in Fig. 2 designates a smooth evolution of the local order

parameters from the disordered state to the glass state. There is no sharp

discontinuity such as the cusp seen in dipolar spin glasses. There is, however,

a very rapid change in the molecular dynamics in the neighborhood of the

local glass ordering as shown in Fig. 4.27,29 This behavior shows that the glass

freezing is undoubtedly collective in nature and not simply a para-

orientational freezing in fixed local crystal fields.

3. Hierarchical dynamics: Quantum rotor glass

With the continuous evolution of the local order parameters as

samples of solid ortho-para hydrogen are cooled into the glass state, the

challenge has been to understand the origin of the rapid change in dynamics

over a relatively small temperature change. This challenge was addressed by

Lin et al.30,31 who invoked the behavior of the system in the presence of a

complex configurational space with a very large number of energy states.
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Fig. 4 Rapid variation of molecular relaxation dynamics in quadrupolar glass state of
ortho-para hydrogen mixtures, near the transition to the glass state. After Fig. 1 from
Sullivan, N. S.; Est�eve, D. Critical Slowing-Down in Spin Glasses: Quadrupolar Glass Phase
of Solid H2. Physica B+C 1981, 107 (1), 189–190, https://doi.org/10.1016/0378-4363(81)
90400-9.
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The most striking observation was how the decay of NMR stimulated

echoes behaved in the glass state.32 The decay of these echoes are deter-

mined by the spectral density of slow rotational motions (as opposed to

the NMR spin-lattice relaxation times which depend on the fluctuations

at the nuclear Larmor frequency).

The observed logarithmic decay (see Fig. 5) follows directly from the

scaling model of Fisher and Huse.33,34 The long-time correlations are dom-

inated by the low energy excitations of coherently re-oriented molecules in

clusters (or droplets). If EB is the free energy barrier of a cluster, the tunnel-

ing rate to overcome a given barrier at temperature T is

W ðEBÞ ¼ W 0 exp � EB

kBT

� �
(33)

where W0 is the characteristic attempt frequency for a given cluster. In the

limit of long times (which is the experimental case), W0 is well defined

because it depends on the cluster size. In hierarchical relaxation, the low

energy barriers must be crossed first, before the larger barriers can be

accessed. In a time t, the energy barriers overcome will therefore be limited

to the range

0 < EB < EmaxðtÞ where EmaxðtÞ ¼ kBT ln ðW 0tÞ: (34)

Log t (msec.)

Ec
ho

 A
m

pl
itu

de

Fig. 5 Logarithmic decay of stimulated echoes in the glass state. The different symbols
refer to different pulse periods τ and different samples (solid circles: τ¼ 1.7D�1; triangles:
τ¼ 3.5D�1, X¼ 0.54, T¼ 0.22 K; open circles: τ¼ 7.7D�1, X¼ 0.43, T¼ 0.15 K.). After Fig. 1
from Lin, Y.; Sullivan, N. S. Low-Frequency Dynamics of Orientational Glasses. Phys. Rev.
B 1988, 38 (7), 5158–5161, https://doi.org/10.1103/Phys-RevB.38.5158.
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When the barriers are crossed, the local order parameters change signifi-

cantly and those clusters will therefore not contribute to the NMR stimu-

lated echoes. As a result, the motion associated with barrier crossing erases

the orientational memory of those clusters. In this scenario, the amplitude of

the stimulated echo will therefore be given by

AðtÞ ¼ C 1�
Z EmaxðtÞ

0

ρðEBÞdEB

" #
(35)

whereC is a constant dependent on the NMR parameters only, and ρ(EB) is

density of states for rotational energy barriers. At low temperatures, only

states with EB � 0 need be considered and we have

AðtÞ ¼ C 1� kBTρð0Þ ln t

t0

� �� �
(36)

where t0 ¼ W�1
0 .

This calculated logarithmic time dependence is not only in good agree-

ment with the NMR results, but it also allows the comparison of the values

deduced for the density of states ρ(0) with those deduced from measure-

ments of the heat capacities at low temperatures. For the local quantum

rotors J ¼ 1, the Jz ¼ �1 states are separated from the state Jz ¼ 0 by a

gap EB. The broad distribution of low energy states ρ(EB) therefore leads

to a heat capacity given by14

Cv

NR
¼ 2

3
kbTX

Z 3Δ0
kBT

0

u2du

ð2e�u=2 + eu=2Þ2
ρðEÞ (37)

where u ¼ 3E
kBT

. Fig. 6 shows an excellent agreement of the experimental

measurements with the calculated values. At the lowest energies, the density

of States ρ(0) � 0.55 which leads to a predicted stimulated echo decay of

AðTÞcalc ¼ const � 0:28 log 10

t

t0

� �
(38)

which is in good quantitative agreement with the observed decay

AðTÞobs ¼ const � 0:30 log 10

t

t0

� �
(39)

for a sample with X ¼ 0.54 at T ¼ 0.22 K.30–32

12 N.S. Sullivan et al.

ARTICLE IN PRESS



4. Classical quadrupolar glasses

In addition to the quantum rotor glasses formed by solid ortho-para

H2mixtures at low temperatures, classical rotors in the form of N2molecules

also transit to orientational glass states at low temperatures when sufficiently

diluted with argon.37–43 A phase diagram very similar to that established for

dilute ortho-para H2 mixtures is observed in solid N2–Ar mixtures. For high

N2 concentrations (X > 77%), a first-order transition to a Pa3 structure

occurs, driven by the quadrupole–quadrupole interactions betweenN2mol-

ecules. At lower N2 concentrations the low temperature state is character-

ized by a broad distribution of local order parameters (as inferred fromNMR

line shapes of 15N2 molecules) and the crystal lattice structure remains hcp.

At very low N2 concentrations, 42%< X< 57%, the lattice structure at

low temperatures remains fcc and instead of a random distribution of local

order parameters, the NMR line shapes are consistent with an approxi-

mately fixed value for the local orientational order parameter with the local

symmetry axes remaining broadly distributed. The overall phase diagram is

shown in Fig. 7.

Temperature (K)

H
ea

t C
ap

ac
ity

, C
V/N

xR

Fig. 6 Comparison of observed and calculated temperature variation of the heat capacity
of solid ortho-para H2 quadrupolar glass state. The symbols refer to experimental data
(crosses: Engelsberg and Borges,35circles: Haase et al.36). The broken line is the prediction
for a constant density of states and the solid line is the best fit as shown in the inset. After
Fig. 2 from Lin, Y.; Sullivan, N. S. Low-Frequency Dynamics of Orientational Glasses. Phys. Rev.
B 1988, 38 (7), 5158–5161, https://doi.org/10.1103/Phys-RevB.38.5158.
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There is special interest in studying the local glass states in sold N2–Ar
mixtures because the order parameters can be probed at very low frequencies

using high dielectric measurements of the dielectric susceptibility. This was

carried out by Pilla et al.41,44 using low frequency AC susceptibility mea-

surements. The low frequency dynamics revealed by these measurements

exhibit distinct hysteresis loops as shown in Fig. 8. In the long range ordered

Pa3 phase, the hysteresis loops are closed and the glass state occurs in a

narrow region between X ¼ 56% and X ¼ 77%. Below X ¼ 56% the

hysteresis loops remain open, indicating that the glass state persists down

to the lowest temperatures explored.

In the glass state one can apply a generalized fluctuation-dissipation

theorem assuming a model of simple replica symmetry breaking.45,46 One

result of this theorem is that below the glass transition temperature TG,

the area of the hysteresis loop scales as

AðΔTÞ∝ ΔT
TG

� �2

: (40)

Pilla et al.41,44 showed that the experimental results were in good agreement

with this prediction.

Fig. 7 Phase diagram for solid N2–Ar mixtures. After Fig. 4 from Pilla, S.; Hamida, J. A.;
Muttalib, K. A.; Sullivan, N. S. Molecular Solid Glasses: New Insights Into Frustrated Systems.
New J. Phys. 2001, 3, 17, https://doi.org/10.1088/1367-2630/3/1/317.
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5. Frustrated Bose glass dynamics

Dichloro-tetrakis thiourea-nickel [NiCl2-4SC(NH2)2], often referred

to as DTN, is a simple quantum molecular magnet exhibiting frustration. It

forms a Bose glass state in the presence of disorder which occurs when a small

percentage of Cl are replaced with Br.47,48

Fig. 8 Evidence for hysteresis in N2–Ar solid mixtures from measurements of the electric
susceptibility E;W, warming; C, cooling.After Fig. 1 from Pilla, S.; Hamida, J. A.; Muttalib, K. A.;
Sullivan, N. S. Dielectric Response of N2-Ar Solid Solutions in the Audio Frequency Range. Phys.
Rev. B 2003, 67 (17), 174204, https://doi.org/10.1103/PhysRevB.67.174204.
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Pure DTN has a body-centered tetragonal crystal structure with the

Ni-Cl-Cl-Ni linkage parallel to the c-axis. Thiourea molecules in the

ab-plane are linked via hydrogen bonding and are polarizable. The Ni atoms

form two interpenetrating tetragonal sub-lattices. Because of high ion

anisotropy of the form DS2Z , the SZ ¼ �1 states are separated from the

SZ ¼ 0 state. Applying a strong magnetic field lowers the energy of the

Sz ¼ +1 state and when it reaches the energy of the SZ ¼ 0 state an anti-

ferromagnetic ordering in the ab-plane occurs.

The magnetic properties of the Ni ions can be described as an ensemble

of interacting bosons with S� ¼ (2 � n)b, S+ ¼ (2 � n)b† and SZ ¼ n � 1,

with n ¼ bb†. b, b† are triplet-boson operators and n can be 0,1, or 2. The

bosonic interaction Hamiltonian is

H ¼ �
X
ðijÞ, c

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ni

2

q
bib

{
j

ffiffiffiffiffiffiffiffiffiffiffiffi
1� nj

2

r
+ h:c:

+
X
ðijÞ, ab

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ni

2

q
bib

{
j

ffiffiffiffiffiffiffiffiffiffiffiffi
1� nj

2

r
+ h:c:

+
X
i

Diðni � 1Þ2 � gμBH
X
i

ni:

(41)

In zero field the large value of D leads to a quantum paramagnetic state,

corresponding to a Mott insulator with n ¼ 1 particles per Ni atom. The

energy gap between the Sz ¼ 0 state and the next state is

Δ ¼ D� 2 Jc � 4 Jab: (42)

Applying a magnetic field of strength

Hc1 ¼ Δ=μg � 2:1T (43)

closes the gap. Increasing the field beyond Hc1 leads to an increase in the

number of bosons and it is these bosons that condense into a magnetic

Bose–Einstein condensate. As the applied field is further increased, the spins
cant away from the ab-plane and become saturated at about 12T.

When disorder is added by randomly replacing the Cl linker spins with

larger Br spins, a Bose glass49 is created. The observed phase diagram for 8%

Br replacement of the Cl linkers is shown in Fig. 9

In the Bose condensation of the Ni spin excitations in DTN, one

observes a strong magneto-electric effect.50,51 The surprising feature of

the Bose glass state is that the observed magneto-electric effect (although
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showing the expected quadratic dependence as a function of applied mag-

netic field) exhibited a strong peak as a function of frequency near 500 Hz

followed by a power law decay as shown in Fig. 10.

As with the case of the frustrated quantum spins (J ¼ 1) in the orienta-

tional glasses, the frustrated spins in the Bose glass state where there is also

disorder, needs to be approached using hierarchical relaxation dynamics.

The magnetic susceptibility is measured with an AC electric field applied

at frequency f and the change in electric polarization is determined from

the impedance change ΔZ in a carefully balanced capacitance bridge.50

The impedance change at the bridge is

ΔZ ¼ � 1

2πf
ΔC
C2

0

(44)

whereΔC is the change in capacitance due to the sample’s dielectric suscep-

tibility and C0 is the sample cell capacitance. The observed signal from the

bridge (reported in Yin et al.50) is therefore

S ¼ �Kf �1δχðf Þ (45)

where δχ( f ) is the change in susceptibility of the sample for an excitation

frequency f, and K is a constant that depends on the sample cell construction.

For hierarchical relaxation, the energy barriers crossed in a time t ¼ 1/f

will satisfy

Magnetic Field (T)

Te
m

pe
ra

tu
re

 (K
)

AC susc. kink
DC susc. kink
CV peak
QM

0 2 4 6 8 10 12 14 16 18

1.2

1.0

0.8

0.6

0.4

0.2
MG

BEC

Bose Glass

x=0.08

MI

Fig. 9 Phase Diagram for the BEC and Bose glass states for Br (8%) doped DTN. After Fig. 1
from Yin, L.; Xia, J. -S.; Sullivan, N. S.; Fry, J. N.; Cheng, H. -P.; Yazback, M.; Zapf, V. S.; Paduan-
Filho, A. Anomalous Frequency Dependence ofMagneto-Electric Effect in Doped DTN. Physica
B 2021, 608, 412875, https://doi.org/10.1016/j.physb.2021.412875.
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0 < E < EmaxðtÞ (46)

where

EmaxðtÞ ¼ kBT ln ðΓ0tÞ: (47)

Γ0 is the attempt rate to cross energy barriers and needs to be calculated from

the spin–spin interactions in the frustrated state. After the barriers are tra-

versed, the electric polarization beforehand or the memory of the previous

states will be erased. The resulting change in electric susceptibility will be

Δχ ¼ G

Z Emax

0

ρðEÞdE: (48)

Here ρ(E) is the density of spin excitations andG is a constant. Assuming that

the density of states is constant at low temperatures (as is the usual case for

spin glasses), the frequency dependence of the change in susceptibility is then

predicted to be

Δχ ¼ kBTG ln
Γ0

f

� �
: (49)

The signal recorded by the bridge circuit will then be
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Fig. 10 Anomalous frequency dependence of the magneto-electric effect in the Bose
glass state of DTN-Br. The solid squares are experimental points. The dashed, solid, and bro-
ken green lines are for different power laws with exponent α¼ 0.50, 0.65, and 0.75, respec-
tively. After Fig. 3 in Yin, L.; Xia, J. -S.; Sullivan, N. S.; Fry, J. N.; Cheng, H. -P.; Yazback, M.;
Zapf, V. S.; Paduan-Filho, A. Anomalous Frequency Dependence of Magneto-Electric Effect
in Doped DTN. Physica B 2021, 608, 412875, https://doi.org/10.1016/j.physb.2021.412875.
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ΔZ ¼ �G
kBT

f
j ln f

Γ0
j: (50)

While this frequency dependence provided a qualitative fit to the experi-

mental data, it does not account for the scaling arguments of Thill and

Huse,52 following the pioneering study of Fisher and Huse.34 Those scaling

arguments showed that the low energy excitations of Ising-like spin glass

states that dominate the long-time correlations consist of clusters of

“flipped” spins or “droplets” that scale with length as L�θ where 0 < θ
� (d� 1)/2 where d is the effective dimensionality of the excitation system

(d ¼ 2 for DTN). Fisher and Huse33,34 considered barrier heights to scale

as B � ΔLΨ and they found that the spin–spin autocorrelation functions

scaled as

C � T
Δ

T ln ðt=t0Þ
� �θ

Ψ

(51)

where θ � Ψ � 2. As a result, the frequency-dependence expected for the

magneto-electric measurement scales as

CðωÞ � kbT

ω
ln

ω
2πΓ0

				 				α (52)

where the exponent 0< α< 1. In Fig. 10, we see that the experimental data

is best described by an exponent α ¼ 0.65.

The power law behavior with exponent α< 1 has also been observed in

ordinary spin glasses. Joh et al.53 showed that the dynamical correlation

length for CuMn and CdCr1.7In0.3S4 obeyed the form

ξðt,TÞ∝ T

TG

� �
ln ðt=t0Þ

� �1=Ψ
(53)

where 1/t0 is an attempt frequency to cross energy barriers andTG is the spin

glass temperature. By varying the applied magnetic field, they showed that

the states at the barrier height depended on the waiting time tW with

ΔðtW ,TÞ ¼ kBT ln ðtW=τ0Þ: (54)

Kisker et al.54 also reported a similar scaling law for the off-equilibrium

dynamics of finite-dimensional spin-glass models.
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6. Conclusion

We have considered a wide range of disparate physical systems that

have a common feature: the interacting elements (electric or magnetic

dipoles, or quadrupoles) are highly frustrated and in the presence of disorder,

the landscape of different energy states is a complex array of energy minima

and maxima. While some very general and approximate mean field treat-

ments can explain the observed phase diagrams semi-quantitatively, the var-

iation of the dynamics of the system, and in particular the changes as local

ordering sets in, can be challenging. In this review we showed how taking

Jack Sabin’s principle of keeping the underlying driving physics as simple as

possible, one can resolve the dynamical behavior and show how it is con-

nected to thermodynamic properties such as the heat capacity. The under-

lying theme was to invoke hierarchical dynamics as the systems move

through configuration space as a function of temperature: low energy bar-

riers must be overcome before attempting to cross high energy barriers.

Following this theme, we were able to understand the peculiar logarithmic

decay of NMR echoes in the quadrupolar glass state of solid ortho-para

hydrogen mixtures and their relation to the heat capacity of those glassy sys-

tems. One was also able to understand the behavior of the hysteresis

observed for the temperature dependence of the electric susceptibility in

solid N2–Ar mixtures and its relation to replica symmetry breaking in clas-

sical orientational or quadrupolar glasses such as solid N2–Ar mixtures.

Finally the anomalous dynamics reported for Bose glass states of the quantum

magnet DTN (when diluted with Br) could also be understood in terms of

hierarchical relaxation.
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