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Conductance distribution across the Anderson transition in a random matrix model
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A model based on random matrix theory (RMT) is used to obtain the full conductance distribution P(g) in
three dimensions (3D) across the Anderson metal-insulator transition, and compared with the corresponding
quasi-one-dimensional (Q1D) case where there is only a smooth crossover. We show that while the differences
between the two are subtle, the details of the results from the RMT model agree very well with the existing
numerical studies of the tight-binding Anderson model in 3D vs Q1D, including the critical region in 3D.
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I. INTRODUCTION

The Anderson transition in a disordered conductor is a
quantum (zero temperature) phase transition from metal to
insulator, as a function of the strength of disorder [1–3].
The scaling theory of localization [4] provides the framework
that describes the transition in terms of the dimensionless
conductance g, where g � 1 corresponds to a metal while
g � 1 corresponds to an insulator, the transition happening
at g ∼ 1. However, absence of self-averaging leads to large
mesoscopic fluctuations [5–10] and the mean or the typical
values of g cannot adequately describe the transport properties
of a disordered conductor, especially near the critical region
where the variance of g becomes of the same order as the
mean value [11–14]. In quasi-one-dimension (Q1D) where
there is no phase transition, the shape of the distribution of
conductance P(g) changes from a Gaussian in the metallic
limit to a log-normal in the insulating region, with a highly
asymmetric “half log-normal” distribution in the crossover
region [15–19]. Numerical results for the tight-binding Ander-
son model [20–22] as well as experiments on gated GaAs:Si
wires [23] suggest that the distributions remain qualitatively
similar in three dimensions (3D) across the transition, which
suggests that it might be possible to consider P(g) as an
order-parameter function [24] for the Anderson transition.

Analytically, the distribution of conductance can in prin-
ciple be reconstructed from the moments of the distribution if
the moments are finite and unique. Within the field-theoretical
framework, these moments have been calculated in a pertur-
bation theory for small ε in 2 + ε dimensions [25], but the
distribution at the critical point obtained from the moments
for ε = 1 has a Gaussian head and power-law tails [26] which
do not agree with numerical results in 3D. There is no field-
theoretical framework where the conductance distribution can
be obtained directly without first calculating the moments of
the distribution.

In this work we propose to use a random matrix model (or
log-gas model [27], to be precise) to study the full P(g) as a
function of disorder across the Anderson transition. It is a toy
model that provides a possible analytical framework to study

a quantum phase transition in terms of an order-parameter
function. Instead of trying to reconstruct the distribution from
its moments, we obtain the full P(g) directly from the joint
probability distribution (JPD) pN ({λi}) of the N transmission
levels λi, i = 1, 2, . . . , N , where the conductance is a linear
statistics given by [10,28]

g =
∑

i

1

1 + λi
. (1.1)

In the large-N limit, the distribution of conductance then fol-
lows from

P(g) =
∫ ∞

0

N∏
i=1

dλi pN ({λi}) δ

(
g −

∑
i

1

1 + λi

)
. (1.2)

This method was used to obtain the highly asymmetric “half
log-normal” distribution in the crossover region in Q1D men-
tioned above [15], based on the known JPDQ1D for Q1D
systems [29]. This has been shown to be equivalent in Q1D
[30,31] to the nonlinear sigma-model description of the An-
derson model [32,33].

The eigenvectors of the transmission matrices in Q1D are
isotropically distributed at all disorder; therefore JPDQ1D al-
lows only a crossover from metallic to insulating regions.
This isotropy assumption was built into the derivation of the
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [34–37]
whose solution gives the JPDQ1D mentioned above. Clearly,
the Anderson model in 3D requires a breaking of the isotropy
symmetry, but the nature of the correlations of the eigenvec-
tors of the corresponding transmission matrices in dimensions
other than Q1D is highly nontrivial. By relaxing the isotropy
assumption of the eigenvectors a generalized DMPK equa-
tion was obtained [38–41], which has been numerically solved
[42] to show that the anisotropy correlations indeed include
the effects of dimensionality in the full conductance distri-
bution P(g) and agree very well with numerically obtained
P(g) from the tight-binding Anderson model of disordered
conductors. However, analytic solution of the generalized
DMPK equation is not yet available except for the very strong
disorder limit where only the smallest one or two transmission
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eigenvalues play any significant role; in this limit a single
anisotropy parameter has been shown to effectively contain
the important effects of dimensionality [43–45].

Recently, a simplified generalized random matrix model
with a single anisotropy parameter γ (a 3D generalization of
the Muttalib-Borodin ensembles [46–48]) has been proposed
and studied analytically [49,50]. The results, namely the exact
density of the eigenvalues as a function of γ having a sharp
crossover from metallic to insulating behavior, suggest that a
model of JPD3D inspired by the strong-disorder solution of
the generalized DMPK equation might be used as a model
to study in detail, within the random matrix theory (RMT)
framework, the Anderson metal-insulator transition in terms
of the full conductance distribution. In the present work we
propose such a one-parameter RMT model and use the Monte
Carlo method to evaluate the multidimensional integral in
(1.2), thereby obtaining the full conductance distribution in
both Q1D and 3D across the metal-insulator transition within
the generalized RMT framework. While the Monte Carlo
method has been previously used to obtain the full P(g) in a
Q1D system [51], a 3D system with a possible quantum phase
transition has not been studied so far, due to the absence of
an appropriate model. We show that the essential differences
between Q1D and 3D in the conductance distribution is cap-
tured in remarkable detail by our simple one-parameter RMT
model.

The rest of the paper is organized as follows. In Sec. II we
introduce our model for JPD3D based on the detailed numer-
ical studies of the generalized DMPK equation. The model
contains a single parameter γ which takes into account the
correlations of the eigenvectors of the transmission matrices
in 3D; γ = 1 reduces it to the Q1D limit JPDQ1D. This allows
us to compare 3D vs Q1D within the same framework in great
detail. We briefly describe our method based on Monte Carlo
in Sec. III. In Sec. IV we present our results which show that
the major differences in P(g) between Q1D and 3D around
the critical region lie in the range g � 1. These differences
agree very well with numerical results from the tight-binding
Anderson model [20]. In other words, our model of JPD3D

captures the essential features of dimensionality via the single
parameter γ . Section V contains our summary and conclusion.

II. THE MODEL

The standard model to study the metal-insulator transition
is the Anderson model on a d-dimensional lattice, defined by
the Hamiltonian

H = W
∑

i

εic
†
i ci +

∑
〈i, j〉

c†
i c j, (2.1)

where c†
i and ci are the creation and annihilation operators for

electrons. Here εi is the energy of site i, randomly distributed
with (typically) a box distribution |εi| � 1/2, W is the strength
of disorder, and 〈i, j〉 refers to the sum over nearest-neighbor
sites; the hopping strength is taken to be 1. The model has
been extensively investigated numerically, including the full
distribution P(g) across the transition [22], which occurs at
a critical disorder Wc in 3D. However, as mentioned above,
currently available theoretical techniques are not adequate to
study P(g) from (2.1) analytically.

Instead of starting from a Hamiltonian, an alternative way
to study the conductance distribution is to start directly with
a transfer matrix formulation. A disordered three-dimensional
conductor of length Lz and cross section L2 connected to two
ideal leads has N transmission channels, with N ∝ L2. Trans-
port properties are then determined by the 2N × 2N transfer
matrix M connecting the outgoing flux to the incoming flux
across Lz. Flux conservation leads to a general form for M
given by [10,35]

M =
(

v1 0
0 v3

)(√
1 + λ

√
λ√

λ
√

1 + λ

)(
v2 0
0 v4

)
. (2.2)

Here vi are N × N unitary matrices, and λ is a diagonal matrix
with non-negative elements. The N × N transmission matrix
tt† can be written as tt† = v4(1 + λ)−1v

†
4 and diagonalizing

tt† gives the eigenvalues λ as well as the elements of the ma-
trix v. If the JPD pN ({λi}) of the eigenvalues are known in the
large-N limit, then the full distribution of conductance is given
by (1.2). In Q1D, which assumes isotropy of the eigenvectors
in v, pQ1D

N ({λi}) is known analytically [29]. While the exact
solution as a determinant is complicated, a good description
in the region with g � 1 is given by

JPDQ1D ≡ pQ1D
N ({xi})

∝
∏
i< j

∣∣x2
i − x2

j

∣∣ β

2 | sinh2 xi − sinh2 x j |
β

2

N∏
i=1

e−V (xi ),

V (xi ) = �

2
x2

i − 1

2
ln(xi sinh 2xi ); sinh2 xi = λi, (2.3)

where � is a parameter that determines the average conduc-
tance. Here β = 1, 2, 4 correspond to the orthogonal, unitary,
and symplectic symmetry classes, respectively [52]. Com-
pared to the standard Wigner-Dyson random matrix model
[52,53] originally proposed to describe nuclear energy level
correlations,

pWD
N ({xi}) ∝

∏
i< j

|xi − x j |β ×
N∏

i=1

e−�x2
i , (2.4)

the two-particle interaction | sinh2 xi − sinh2 x j | as well as the
logarithmic terms in the single-particle confining potential
V (x) in (2.3) arise from the solution of the DMPK equa-
tion [29,54] that describes the evolution of the JPD with length
in a Q1D disordered conductor. JPDQ1D in (2.3) was used in
[15–17] for β = 2 to obtain the Gaussian, log-normal, and
“half log-normal” distributions in the metallic, insulating, and
the crossover region (between metal and insulator), respec-
tively, using Eq. (1.2).

We propose that the model for the one-parameter general-
ization to 3D in the region around the transition has the form
inspired by the solution of the generalized DMPK equation in
the insulating limit [43–45]

JPD3D ≡ p3D
N ({xi})

∝
∏
i< j

∣∣x2
i − x2

j

∣∣ β

2 γ | sinh2 xi − sinh2 x j |
β

2 γ

N∏
i=1

e−V (xi );

0 < γ < 1. (2.5)
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For simplicity, the confining potential V (x) has been kept the
same as in (2.3). The phenomenological parameter γ appear-
ing as exponents of the interaction terms is an approximation
of the matrix γab related to the eigenvector correlations of the
matrix v in (2.2) given by [39]

Kab ≡
∑

i

〈|via|2|vib|2〉; γab = 2Kab

Kaa
, γ ≈ γ12, (2.6)

where the angular bracket 〈·〉 indicates an average over the
realizations of disorder. Apparently at very strong disorder the
exponent is important for the second interaction term only, and
it has been shown numerically to contain information about
the strength of disorder as well as the dimensionality of the
system [43–45]. We find that including the exponent on both
interaction terms [55] as in (2.5) allows us to go beyond the
very strong disorder limit, such that the region close to both
sides of the critical disorder can be explored.

Isotropy of the eigenvectors would imply

KQ1D
ab = 1 + δab

N + 1
; ⇒ γ = 1. (2.7)

Thus JPD3D given by (2.5) reduces to JPDQ1D in (2.3)
when γ = 1. For any γ < 1, the eigenvectors are no longer
isotropic. While a single anisotropy parameter may not con-
tain all effects of dimensionality as well as strength of
disorder, it does allow us to study the important differences
in any linear statistics of the eigenvalues, like the conductance
(1.1), in Q1D vs 3D, within the same level of accuracy. Note
that γ is also presumably scale dependent, becoming scale
invariant at the critical point [44]. However in this toy model
we consider γ as an independent phenomenological parameter
related to the disorder of the system, which is characterized
by the average conductance g0 = 〈g〉. Our small-N studies
will not allow us to identify the critical point γc or the cor-
responding gc by, e.g., considering the scale invariance of the
distribution. Nevertheless, once the critical point is identified
by other means, changing γ allows us to study the changes
in the shape of the distribution across the Anderson metal-
insulator transition. Thus, the model provides a framework
where P(g) can be used as an order-parameter function that
describes a quantum phase transition.

The parameter � in Q1D determines the average conduc-
tance. In 3D, both � and the anisotropy parameter γ are
related to the strength of disorder. Numerical studies suggest a
monotonic relationship between the two [44], so there is again
only a single parameter that characterizes our model. The
relationship �(γ ) must satisfy certain known limits, namely,
� � 1 when γ → 1 and � � 1 when γ → 0. Numerically
it has been established that � ∼ 2γ near the critical point of
the Anderson transition. We thus take the simplest relationship
that satisfies all three known limits, � = cγ /(1 − γ ). Here the
constant c is of order 1 and fixes the average conductance
g0 = 〈g〉 for a given value of γ . We find that for N = 6,
c = 1.7 gives values of g0 around the transition that are close
to the values of g0 obtained from the numerical solutions
of the Anderson model and gives best fit for the 3D critical
conductance. Note that once c = 1.7 is fixed, disorder in 3D
is entirely characterized by the remaining single parameter γ

of the model.

FIG. 1. Variance for Q1D, β = 2. Exact variances (solid line) are
from nonlinear σ model, taken from [17]. RMT results for N = 6 are
from our MCMC computation.

III. METHOD

We use the Markov chain Monte Carlo (MCMC) method
to evaluate the multidimensional integral (1.2). MCMC is
a good choice for our purpose for many different reasons.
Numerical integrals get very slow beyond dimension 3. Monte
Carlo is the default choice for any such integral in higher
dimensions. Particularly for a JPD like (2.5), we cannot em-
ploy other methods (e.g., orthogonal polynomials) for RMT
computations due to the exponent γ . MCMC also allows us
to evaluate P(g), g0, var(g), etc., in a straightforward way. We
will choose N = 6, as was chosen in the Monte Carlo studies
of [51] for Q1D. To make sure that our procedure works we
reproduced the variance curve for Q1D [17] for β = 2 in
Fig. 1. It is clear from the figure that N = 6 gives very good
results for all disorder in Q1D. In particular, it reproduces the
well-known result var(g) = 2/(15β ) in the weakly disordered
region. We have checked that the obtained variances at all
disorder converge toward the exact values as N is increased.
In 3D, on the other hand, such small values of N give a
variance in the weakly disordered region which is smaller than
the known result. The agreement improves as N is increased,
and we find that one needs N � 6 to achieve the correct
result. This is because in the weakly disordered region a large
number of channels [characterized by a large number of small
eigenvalues λi; see (1.1)] contribute to the conductance. Since
our resources restrict us to a choice of N = 6, this implies
that we will be restricted to stronger disorder, where only a
small number of channels (with relatively larger eigenvalues)
contribute. We find that with our model (2.5), this includes
the critical region around the metal-insulator transition which
is our main focus in this study. Clearly, in order to identify the
critical point and to explore the critical region further beyond
the scope of the current focus, a systematic study of the N
dependence of P(g) for much larger N would be essential.

We emphasize that the critical conductance is not a uni-
versal quantity, and we do not try to match the values of
the conductance between the RMT and the tight-binding
Anderson model by, e.g., fine-tuning the phenomenological
relationship �(γ ) as mentioned in Sec. II. Thus for a given
disorder our values of g0 from RMT will not in general agree
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FIG. 2. Average conductance g0 = 〈g〉 vs γ in 3D for N = 6.
Inset shows g0 vs � in Q1D.

with the values obtained numerically in [20] from the An-
derson model (2.1). Nevertheless, we can compare the P(g)
between the RMT and the Anderson model unambiguously
if we always characterize the disorder by the average conduc-
tance g0. We achieve this in the following way: In [20], for the
Anderson model, P(g) in Q1D and 3D were compared where
both had the same average conductance, say gA

0. Within the
RMT model we do the same, for an average conductance g0

that may not be equal to gA
0. For a fixed N , we first find a

value of the Q1D parameter � for which our full P(g) best
matches with the full numerical P(g) of the Anderson model,
especially near the tail of the distribution g � 1. (The high
sensitivity of the distribution to the choice of � allows us,
within our accuracy, to choose the “best match” simply by eye
estimation.) This � then fixes the value of g0 in Q1D (see inset
of Fig. 2), which may not agree with the gA

0 of the Anderson
model. We then find a 3D system in our model with the same
g0, characterized by the 3D parameter γ (see Fig. 2), which
then determines the full P(g) in 3D. Thus the Q1D and 3D
distributions within the RMT model can be compared with the
corresponding distributions of the Anderson model directly,
without having to match the average conductance between the
two very different models.

IV. RESULTS

In numerical evaluations of the tight-binding Anderson
model, the strength of disorder is specified by, e.g., the width
of the random distribution of the site energies W . In the gen-
eralized RMT framework discussed above, � in Q1D and γ in
3D are phenomenological parameters that depend on disorder.
To compare the results, it is more appropriate to choose the
average conductance g0 ≡ 〈g〉 as the measure of the strength
of disorder. Figure 2 shows how g0 changes with γ in 3D and
� in Q1D for N = 6.

We primarily consider the orthogonal case of β = 1 in
detail because Markoš [20] has done an extensive numerical
comparison of the 3D vs Q1D conductance distributions in the
tight-binding Anderson model (2.1) which can be compared
with our 3D vs Q1D RMT models. The β = 2 case, where

FIG. 3. P(g) for different values of g0, showing the change in the
shape of the distribution from metallic (g0 � 1) to insulating regions
(g0 � 1). Top panel is for Q1D, while the bottom panel, showing
very similar changes, is for 3D.

only limited numerical results are available, will be consid-
ered briefly toward the end.

Figure 3 shows P(g) for different values of disorder char-
acterized by the average conductance g0, for 3D as well as
Q1D. The distribution changes from a Gaussian in the metallic
region (g0 � 1) to a very wide and highly asymmetric distri-
bution in the insulating region (g0 � 1), with broad unusual
shapes in the intermediate regions for both 3D and Q1D.
While the changes in the shape of the distribution for either
3D or Q1D are quite dramatic, differences between Q1D and
3D are not obvious. In the following, we discuss the similar-
ities and the differences between Q1D and 3D distributions,
comparing them with numerical results whenever available.
Note that while we do not obtain the critical point for 3D
independently in our work, it is possible to identify it by
comparing with the existing numerical results, as we show
later.

It is well known for Q1D systems (and β = 1) that in the
weakly disordered region the conductance distribution is a
Gaussian [16], with a universal variance 2

15 ≈ 0.13 [54]; the
distribution remains Gaussian in 3D, with a variance ≈ 0.3
[56]. Figure 4 shows P(g) in the weakly disordered regions
for both Q1D and 3D for similar average conductances in
the RMT model, compared with the numerical solutions [20]
of the tight-binding Anderson model (2.1). While this phe-
nomenon of a limiting Gaussian distribution applies to some
general RMT (or log-gas) ensembles [57–59], to the best of
our knowledge it has not been proven for a more general JPD
like (2.5). Our result suggests that this should be true also
for a log-gas model like (2.5), possibly with a more general
single-particle potential.
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FIG. 4. P(g) in the weakly disordered region from our RMT
model compared with numerical results from the Anderson model
obtained in [20]. For both 3D and Q1D, P(g) are Gaussian. The
variance in Q1D is 0.13, for both RMT and the Anderson model.
In 3D, the variance for the Anderson model is 0.27, while it is 0.21
for RMT for N = 20. The inset suggests that the RMT variance tends
towards the numerical results as N increases.

The differences between Q1D and 3D in Fig. 4 are very
similar between the RMT vs Anderson models. However,
while the Q1D variance is given correctly for N = 6 in
the RMT model, it requires N > 20 to give the correct 3D
variance. As N is increased from N = 6, the variance in-
creases from 0.18 toward the value of the Anderson model.
As mentioned in Sec. III, this implies that although N = 6
gives qualitatively good results even in the weakly disordered
region, it is too small for quantitative comparison at weak dis-
order because many channels contribute to the conductance in
this region. Since we are limited to N = 6, we keep our focus
on stronger disorder, where only a few channels contribute
and our results are more reliable.

To focus on the differences between Q1D and 3D in the
strongly disordered region, we evaluate the integral

I1 =
∫ ∞

1
P(g) dg (4.1)

as suggested in [20]. Figure 5 shows the results as a func-
tion of g0 for both 3D and Q1D. The differences, increasing
with decreasing g0, are in excellent agreement with numerical
results. Thus the RMT model, with the exponent γ of the
two-level interaction terms in (2.5), captures the important 3D
features that distinguish P3D(g) from the corresponding Q1D
distribution PQ1D(g).

To explore the differences between 3D vs Q1D further,
we therefore focus on the tails near g � 1 and compare the
distributions for two different values of disorder in detail in
Fig. 6, one on the metallic side and one on the insulating
side of the critical region. The results from our RMT model
confirm the numerical results of [20] that the Q1D tail for a
given g0 at g � 1 is much sharper than the corresponding 3D
tail for the same g0. The distribution for g < 1 is very similar
between 3D and Q1D, which also agrees with the numerical
results. Note that there is a discontinuity in the slope at g = 1
for g0 � 1 in the RMT model in Q1D as shown analytically

FIG. 5. I1 ≡ ∫ ∞
1 P(g)dg for different g0 for 3D vs Q1D from

the RMT model, compared with numerical results of the Anderson
model [20].

FIG. 6. Detailed comparison of the tails of the distribution for 3D
and Q1D cases obtained from (1.2) for the RMT model compared
to the numerical solutions of the Anderson model [20]. To keep the
comparisons meaningful, both Q1D and 3D distributions are chosen
to have the same g0 within each model. Top panel corresponds to
a region on the metallic side, while the bottom panel corresponds
to the insulating side of the critical region. In both cases, Q1D tails
drop much faster than the 3D tails, the most distinguishing difference
between Q1D and 3D distributions.
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FIG. 7. Critical distribution for 3D, compared with numerical
results of the Anderson model from [20]. Also shown are the Q1D
results with similar values of g0 within each model. While the bottom
panel is on a logarithmic scale emphasizing the differences in the
tails g > 1 of the distributions between Q1D and 3D, the top panel
in linear scale shows that the overall agreement with the Anderson
model remains good for g < 1 as well.

in [19] which agrees with the numerical results in [21]; our
results are consistent with it.

Given that the model gives P(g) very well on both sides
of the transition, ideally we should be able to identify the
critical point from finite-size scaling; the distributions should
become scale invariant at the critical point. Unfortunately,
since we work with a small fixed value of N and do not know
how the phenomenological single-particle potential parameter
�(γ ) depends on N , we cannot identify the critical point. Nev-
ertheless, we can compare and match the numerically known
critical distribution Pc(g) by exploring the range of distribu-
tions in the critical region, between the metallic and insulating
distributions of Fig. 6, and comparing with the Pc(g) from
numerical studies of the Anderson model. Figure 7 shows P(g)
that matches with numerical Pc(g) from [20]. The tail agrees
very well, and the difference with the corresponding Q1D for
a similar value of g0 also agrees with numerical results. We
also show the g < 1 region in linear scale to show the overall
agreement.

FIG. 8. Tails of the distribution to show the change in the cur-
vature across the critical region. Green plot corresponding to the
critical conductance at gc = 0.299 is consistent with zero curvature,
implying an exponential tail in linear scale. Tails for g0 > gc have
increasing slopes, while those for g0 < gc are consistent with zero
curvature.

As a measure of systematic change, we show in Fig. 8 a
comparison of how the tails of the distribution change across
the transition. In the range g > 1, the metallic side has a clear
curvature with a slope increasing with g, while the critical
point with g0 = 0.299 (see Fig. 7) is consistent with a zero
curvature. Other plots on the insulating side are also consistent
with zero curvature. Note that the y axis is logarithmic, so a
straight line implies an exponential decay. While the metallic
side near the critical point is not yet Gaussian, it matches with
Gaussian at weaker disorder. Thus the tails of the distribution
change from a Gaussian in the metallic region (see Fig. 4) to
an exponential at the critical point and beyond. The existence
of a curvature (a metal), or no curvature (the insulator), could
then be an order parameter that distinguishes between the
two phases. However, our computations at N = 6 with large
fluctuations for P(g) < 10−3 restrict our ability to explore the
possibilities any further.

Finally, we briefly discuss the unitary case. Although de-
tailed numerical studies for P(g) in the unitary case are not
available, we compare in Fig. 9 the critical distribution for
β = 2 and β = 1 obtained in [11] with our RMT model. Note
that a factor of 2 for spin has been included as in the numerical
evaluation so that the tail occurs at g = 2 instead of g = 1.
However, the numerical results do not focus on the tails, and
we just show the overall difference between β = 2 and β = 1;
the agreement shows that the RMT model correctly describes
the unitary symmetry class as well.

V. SUMMARY AND DISCUSSION

The Wigner-Dyson random matrix theory was invented to
explain the universal spectral properties of energy levels of
heavy nuclei. It has been shown since then that the Wigner-
Dyson RMT describes a wide variety of ergodic systems
like quantum dots that are essentially zero-dimensional [53].
The solution of the DMPK equation showed that RMT can
describe a Q1D system provided it contains an additional
two-particle interaction term [29]. However, disorder in a
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FIG. 9. P(g) for the unitary case β = 2 in Eq. (2.5), compared
with numerical results of [11]. A factor of 2 for spin has been
included in the numerical evaluation so that the tail occurs at
g = 2 instead of g = 1; the RMT computation has been modified
accordingly.

Q1D RMT model is different from 3D. Starting with weak
disorder, the effective disorder in a Q1D system increases with
increasing length (in the direction of the current) so that the
system always becomes insulating in the limit of large length,
even with weak disorder. Therefore the Q1D insulating region
in (2.3) is very different from the Anderson insulators in 3D
and the JPDQ1D does not have a metal-insulator transition.

A true insulating region in an RMT model, and as a con-
sequence a metal-insulator transition, requires breaking the
isotropy of the transmission eigenvectors. Roughly speaking,
an isotropic eigenvector of an N-channel transmission ma-
trix, corresponding to a good metal with all channels “open,”
would have all its components equal in magnitude, ∼1/

√
N .

An eigenvector of an insulator, on the other hand, would have
only a few (n � N ) open channels with components ∼1/

√
n,

the remaining channels being closed, breaking the isotropy
symmetry. Thus away from the critical region, the parameter
γ in (2.6) can be crudely interpreted as the fraction n/N of
channels that are effectively open. In contrast in Q1D, an
insulator is obtained by keeping the isotropy of the eigen-
vectors (at weak disorder) but decreasing � (associated with
increasing length) in the single-particle potential sufficiently,
thus allowing all eigenvalues to become very large, leading
to g0 � 1. In the current work we show that the exponent

0 < γ < 1 in our model (2.5) indeed allows for a dimension-
ality dependence in P(g). The differences in P(g) between the
Q1D vs 3D around the critical region are primarily in the tails
of the distribution near g � 1 and the results of our model
are in excellent agreement with numerical results from the
tight-binding Anderson model. In particular, the tail of the
critical distribution in 3D agrees very well with numerical
results after the critical point is identified. This suggests that
(2.5) can be used as an analytically tractable model to study
the Anderson metal-insulator transition in terms of the full
P(g). Since numerical evaluations of P(g) directly from the
generalized DMPK equation also show excellent agreement
with the tight-binding Anderson model [42], our results sug-
gest that model (2.5) might be a reasonable solution of the
generalized DMPK equation [38,39] for all disorder.

We note that a rotationally invariant critical random ma-
trix model for the energy levels has been proposed which
has the original Wigner-Dyson interaction form but a soft
single-particle potential which grows only as the square of
a logarithm at large distances [60]; the spacing distribution
from this model agrees very well with the critical spacing dis-
tribution obtained from tight-binding Anderson model [61].
A solvable random matrix model has been used to obtain
conductance distributions within such a rotationally invariant
transmission matrix model [62,63]. It has been argued that
such models have spontaneous symmetry breaking in order
to be critical [64]. In contrast, the parameter γ in our current
model for transmission levels explicitly breaks the isotropy
symmetry of the transmission eigenvectors.

Our calculations are done with a small fixed N and the
model contains only a scale-independent phenomenological
single-particle potential. These limitations prevent us from
obtaining the exact critical point from the scaling properties
of P(g). A systematic study with larger values of N is needed
to identify the critical point independently and further explore
the critical region within the RMT framework. One interesting
possibility is to explore Fig. 8 further, if the critical distri-
bution can be identified from the curvature of the tails near
g � 1.
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