PHY 2048: Physic 1, Discussion Section 1243H
 Quiz 9 (Homework Set \#11)

Name:

UFID:

Formula sheets are not allowed. Do not store equations in your calculator. You have to solve problems on your own; memorizing final algebraic expressions from homework assignments and just plugging numbers into them will not give you full credit. Leave all your work.

Water is pumped steadily out of a flooded basement at a speed of $5.00 \mathrm{~m} / \mathrm{s}$ through a uniform hose of diameter 2.00 cm . The hose passes out through a window to a street ditch 3.00 m above the waterline.
a) What is the mass of the water pumped out of the basement in one second?

During time interval Δt, the mass of the water pumped out of the basement is
$\Delta m=\rho \Delta V=\rho \pi(d / 2)^{2} v \Delta t$
Therefore, the mass of the water pumped out in one second is
$\Delta m / \Delta t=\rho \pi(d / 2)^{2} v=1.57 \mathrm{~kg} / \mathrm{s}$
b) What is the power of the pump?

The work-energy theorem yields
$W=\Delta E=\Delta K+\Delta U=(1 / 2) \Delta m v^{2}+\Delta m g h$,
where W is the work done by the pump. Since the power of the pump is defined as the work done by the pump in one second, we have
$P=W / \Delta t=(1 / 2)(\Delta m / \Delta t) v^{2}+(\Delta m / \Delta t) g h=65.8 \mathrm{~W}$

