PHY 2048: Physics 1 with Calculus, Fall 2010
 Review: Chapter 14.1-14.10

The purpose of this review is to refresh your memory. Physics is a cumulative subject, so make it sure you understand basic concepts and typical problem solving techniques in previous chapters before moving on to a new chapter!

A. Fluid in Equilibrium

A 3-kg container holds 10 kg of water. A cube of edge length 0.1 m and mass 2 kg is suspended by a string and completely submerged in water. If the whole system is put on a spring scale, what is the reading of the scale?

B. Fluid in Motion

A siphon is a device for removing liquid from a container. In the figure below, tube $A B C$ must initially be filled, but once this has been done, liquid will flow through the tube until the liquid surface in the container is level with the tube opening at A. If the liquid density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the distances in the figures are $h_{1}=20 \mathrm{~cm}, h_{2}=40 \mathrm{~cm}$ and $d=30 \mathrm{~cm}$, what is the pressure at the topmost point B ? The tube has a uniform cross sectional area.

PHY 2048: Physics 1 with Calculus, Fall 2010
 Practice Exam Problems (Chapter 14.1-14.10)

Working on this problem set is optional, but it is strongly recommended. It is quite possible that some of these problems will appear in the exams. Do it on a weekly basis. Cramming is tiring and sometimes it ends up in a disaster.

1. The density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. The density of the oil in the left column of the U-tube shown on the right is: (Variation of Pressure w/ Height) a. 0.20 $\mathrm{g} / \mathrm{cm}^{3} \quad$ b. $0.80 \mathrm{~g} / \mathrm{cm}^{3} \quad$ c. $1.0 \mathrm{~g} / \mathrm{cm}^{3} \quad$ d. $1.3 \mathrm{~g} / \mathrm{cm}^{3} \quad$ e. $5.0 \mathrm{~g} / \mathrm{cm}^{3}$
2. A closed hemispherical shell of radius R is filled with fluid at uniform pressure p . The net force of the fluid on the curved portion of the shell is given
 by: (Pressure and Force) $\begin{array}{lllll}\text { a. } 2 \pi R^{2} p & \text { b. } \pi R^{2} p & \text { c. } 4 \pi R^{2} p & \text { d. (4/3) } \pi R^{2} p & \text { e. (4/3) } \pi R^{3} p\end{array}$
3. One piston in a hydraulic lift has an area that is twice the area of the other. When the pressure at the smaller piston is increased by $\Delta \mathrm{p}$ the pressure at the larger piston: (Pascal's Principle) a. increases by $2 \Delta \mathrm{p} \quad$ b. increases by $\Delta \mathrm{p} / 2 \quad$ c. increases by $\Delta \mathrm{p} \quad \mathrm{d}$. increases by $4 \Delta \mathrm{p} \quad$ e. does not change
4. The dimensions of a wooden raft (density $=150 \mathrm{~kg} / \mathrm{m}^{3}$) are $3.0 \mathrm{~m} \times 3.0 \mathrm{~m} \times 1.0 \mathrm{~m}$. What maximum load can it carry in seawater $\left(\right.$ density $\left.=1020 \mathrm{~kg} / \mathrm{m}^{3}\right) ? \quad$ a. $1350 \mathrm{~kg} \quad$ b. $7800 \mathrm{~kg} \quad$ c. $9200 \mathrm{~kg} \quad$ d. 19 500 kg e. 24300 kg .
5. A $210-\mathrm{g}$ object apparently loses 30 g when suspended in a liquid of density $2.0 \mathrm{~g} / \mathrm{cm}^{3}$. The density of the object is: (Apparent Weight) a. $7.0 \mathrm{~g} / \mathrm{cm}^{3} \quad$ b. $3.5 \mathrm{~g} / \mathrm{cm}^{3} \mathrm{c} .1 .4 \mathrm{~g} / \mathrm{cm}^{3} \mathrm{~d} .14 \mathrm{~g} / \mathrm{cm}^{3} \mathrm{e}$. none of these
6. Water flows through a cylindrical pipe of varying cross section. The velocity is $3.0 \mathrm{~m} / \mathrm{s}$ at a point where the pipe diameter is 1.0 cm . At a point where the pipe diameter is 3.0 cm , the velocity is: (Continuity Equation) \quad a. $9 \mathrm{~m} / \mathrm{s} \quad$ b. $3 \mathrm{~m} / \mathrm{s} \quad$ c. $1 \mathrm{~m} / \mathrm{s} \quad$ d. $0.33 \mathrm{~m} / \mathrm{s} \quad$ e. $0.11 \mathrm{~m} / \mathrm{s}$
7. A large water tank, open at the top, has a small hole in the bottom. When the water level is 30 m above the bottom of the tank, the speed of the water leaking from the hole: (Bernoulli's Equation) a. is $2.5 \mathrm{~m} / \mathrm{s} \quad$ b. is $24 \mathrm{~m} / \mathrm{s} \quad$ c. is $44 \mathrm{~m} / \mathrm{s} \quad$ d. cannot be calculated unless the area of the hole is given e. cannot be calculated unless the areas of the hole and tank are given

Answers: 1-b 2-b 3-c 4-b 5-d 6-d 7-b

