Fundamental Research
Lowest Attainable Temperatures

Unique: High B and Ultra-Low T
Part of National High Magnetic Field Laboratory

Create new states of matter

- Superfluids
- Superconductors
- Magnetic ordering

Explore new phenomena

- Highly correlated electron systems
- Quantum criticality
- 2G Electron gases

Supported by the National Science Foundation
Coldest Temperature in Nature? $T = 2.725$ K

WMAP Resolves the Universe
Credit: WMAP Science Team, NASA
Microkelvin Laboratory has 3 bays:

Each: electromagnetic shield, vibration isolation mounts, nuclear refrigerator
High B/T Bay

- heat switch
- 5 T magnet (to be developed)
- top loading access (2.54 cm diam.)
- 5 mole Pr Ni$_5$
- 8 T magnet
- bottom loading connection
- 15/17 T magnet
- 1×10^{-4}/1 cm dsv
UF-NHMFL High B/T Facility

Available to users worldwide
T < 1mK, B up to 16 T

Research
Superfluid 3He
Nuclear ordering
2D Electron gas
Quantum Transport
Nuclear Refrigerator

Relies on fact that B/T for a ‘good’ magnet remains constant if perfectly isolated.

\[M = F(B/T) \]

(1) Cu: Precool to ~ 10mK in B = 10 T

 Isolate (open superconductor switch)

(2) Demagnetize to 0.03 T (very carefully)

 T drops from 10 mK to 30 microK)

Good design
 -- stay cold for several weeks

Cu or PrNi5 demagnetization

e.g. PrNi5:
 cool from 30mK to 0.03mK

Fig. 10.13. Nuclear spin entropy of PrNi5 as a function of temperature in the indicated fields [10.55] F. Pobell: Ultra-Low Temperatures
Comparison International Facilities
Quantum Fluids & Solids: \(^3\text{He}, \(^4\text{He}, \text{H}_2, \text{HD}\ldots\)

Ideal prototypes for testing fundamental phenomena

♦ *Interactions known from first principles*
♦ *Effect of disorder accurately controllable*

Quantum Transport
Highly polarized dilute Fermi liquids
dé Broglie wavelength > scattering length
→ quantum exchange dominated transport

Nuclear Magnetism --- Solid \(^3\text{He}\)
competing interactions
(anti-ferromagnetic and ferromagnetic)
Superfluid transition in 4He

$T < T_\lambda$

$T > T_\lambda$

Courtesy: S. Balibar, *History of Superfluidity*

arXiv:cond-mat/0303561
Peter Kapitza, (Institute of Phys. Problems, Moscow) and John Allen (Mond Lab., Cambridge Univ.) discovered superflow 1937-39.

Helium 4: boson $s=0$

Superfluid $T < 2.17 \text{K}$

Supersolid $T < 0.2 \text{K}$

Helium 3: fermion $s=1/2$

Superfluid $T < 0.0022 \text{K}$ (spins pair up \rightarrow bosons)

Solid: Nuclear magnet $T < 0.0009 \text{mK}$
Superconductivity

Kamerlingh-Onnes (1911)

\[\Delta T < 10^{-3} \text{ K.} \]

Resistivity \(R \) at \(T < T_c \) is zero, unless \(H > H_c \)

\(T < T_c: \) no dissipation

Temperature \(T \)

Resistivity \(R \)

Kamerlingh-Onnes (1911)
Type 1 Superconductors
(Cooper pairs of e’s)
Low \(T_c\), Low \(H_c\):
Pb 7.2K, 803 G; Al 1.2K, 105 G
Not very practical

New high temperature
Superconductors ceramics: YBCO...

Complex interplay between
lattice symmetry and interactions

High field magnets, MRI, MagLev

\(\text{YBa}_2\text{Cu}_3\text{O}_{7-x}\)

\(T_c\) 93K
\(H_{c2}\) > 100T
\(J \sim 1\text{MA/cm}^2\)

N. Miura et al.
JLTP (2003)
Effect of strong magnetic field on superfluid 3He in 98% porosity aerogel

The normal-A and A-B transitions suppressed due to the scattering of 3He quasiparticles (fermions)
Ideal Fermi Liquid: 150 ppm 3He in 4He
Very dilute, weakly interacting 3He atoms

Quantum Transport: viscosity increase rapidly with B

Spins align in strong B

↑↑ high scattering interaction

↑↓ low scattering interaction

Measure spin diffusion directly with NMR (15 T)

D. Candela et al.
Nuclear Magnetic Order in Solid 3He

High B/T experiments
D. Adams, Y. Takano

High Field Phase ??

Low B phase
Anti-ferromagnetic

Ultra-low T

Magnets

World records

900 MHz NMR quality high homogeneity persistent superconductor (22 tesla)

45 Tesla; Hybrid superconductor outer DC power (25 MW) inner
Resistive Magnets

35 T, 32mm bore, 20MW

Florida-Bitter Magnet Plates
Heavily elongated holes

Four of the five largest magnet labs use Florida-Bitter plates.

Current Density = 700 A/mm²
Power Density = 13 W/mm³
Heat Flux = 7 W/mm²
Destructive Quench

If exceed maximum field, superconductor “quenches”… goes normal.

Releases enormous energy

If protection inadequate

“quench” is destructive.
1. Quantum Phase Transitions

YbRh$_2$Si$_2$

Non-Fermi liquid

AFM

Fermi liquid

Abrupt change in ground state as tune across transition due to quantum fluctuations e.g. sweep B, concentration....
2. "Supersolid" 4He

Sharp drop in rotational inertia

"supersolid fraction" = 2%

M. Chan et al. Penn. State U.

\[\tau_o = 2\pi \sqrt{\frac{I}{K}} \]
“Supersolid” 4He: Effect of 3He Impurities? M. Chan et al.

Need to study quantum behavior of defects.
First experiment to probe microscopic dynamics of proposed supersolid helium

NMR relaxation times measure atom-atom exchange rates: sensitive to changes in ground state and transition to supersolid

Dramatic change in T_1 for low 3He at supersolid transition: mimics change in elastic modulus

S. S. Kim et al.
JLTP 158, 584 (2010)
Ni S=1 spins: 3D XY anti-ferromagnet
--- critical fields: $H_{c_1} \sim 2$ T, $H_{c_2} \sim 12$ T.

Expect power-law T dependence:

$H_{c1}(T) \sim H_{c1}(0) = aT^{\alpha}$ with $\alpha = 1.5$

Confirmed at mK temperatures with $\alpha = 1.47 \pm 0.01$

AC susceptibility measurements, NHMFL
High B/T facility

Ultrasound Measurements

Effect of strong magnetic field superfluid 3He in 98% porosity aerogel

The normal-A and A-B transitions suppressed due to the scattering of 3He quasiparticles (fermions)

Y. Lee et al.
Pulsed NMR studies:
- Determine diffusion and interactions of H$_2$ in mesoporous structures (zeolites and MOFs)

Spin-lattice rates give interaction energies.

Spin-spin relaxation rates measure diffusion.

NMR: can determine intercage diffusion: rates surprisingly high at low temperatures.
Comparison: High B/T Facilities

- Gainesville (High B/T)
- 2009
- 20 + T Upgrade