Chapter 24 Solutions - Problems 1, 3, 4, 7, 11

- 1. Figure P24.3 displays a voltage v(t) versus time *t* curve. Its formula is given by Eq. (24.1): $v(t) = v_0 \sin (2\pi f t)$
 - a. The maximum voltage can be read off from this curve: $V_{\text{max}} = v_0 = \underline{25 \text{ volts}}$

b. The rms voltage is
$$V_{\text{max}} = \frac{v_0}{\sqrt{2}} = 17.7$$
 volts (see Sec 24.2)

- c. The period T = 1 / f can be read from the graph: T = 0.1 s
- d. The frequency f = 1 / T = 10 Hz.
- 3. The current is described by $i = 2 \cos (40 t) = i_0 \cos (2\pi f t)$ Comparing the last two expressions used immediately we see:
 - a. peak current $i_0 = 2 A$

b. effective current
$$I = \frac{i_0}{\sqrt{2}} = 1.41A$$

- c. rms current = effective current = 1.41 A
- d. $40 = 2\pi f$, thus $f \cong 6.37 Hz$
- 4. From the results of Problem 1, we can write:

$$v(t)=25\,\sin\left(20\,\pi\,t\right)$$

7. The current $i(t)=5 \sin (20 t)$ flows through a resistor of $R = 15 \Omega$. The power lost is given by:

$$P = IV = I^2 \quad R = \left(\frac{25}{2}\right)(15) \quad W$$

or P = 187.5 W

- 11. This problem refers to the situation in Fig. 24.5. The capcitance $C = 2\mu F$, the resistance is $R = 5 \ge 10^6 \Omega$, and the *DC* voltage of the battery is V = 12 V.
 - a. The initial current $i(0) = V/R = 2.4 \text{ x } 10^{-6} A$
 - b. The time constant $\tau = RC = 10 s$
 - c. The final charge q ($t = \infty$) = $CV = 2.4 \times 10^{-5}C$
 - d. $q(t = RC) = 0.63 \ CV = 1.51 \ x \ 10^{-5}C$
 - e. $i(t = RC) = 0.37 i(0) = 8.9 \ge 10^{-7}A$