Chapter 24 Solutions - Problems 1, 3, 4, 7, 11

1. Figure P24.3 displays a voltage $v(t)$ versus time t curve. Its formula is given by Eq. (24.1):
$v(t)=v_{0} \sin (2 \pi f t)$
a. The maximum voltage can be read off from this curve:
$V_{\text {max }}=v_{0}=\underline{25 \text { volts }}$
b. The rms voltage is $V_{\max }=\frac{\nu_{0}}{\sqrt{2}}=17.7$ volts (see $\operatorname{Sec} 24.2$)
c. The period $T=1 / f$ can be read from the graph: $T=0.1 \mathrm{~s}$
d. The frequency $f=1 / T=10 \mathrm{~Hz}$.
2. The current is described by $i=2 \cos (40 t)=i_{0} \cos (2 \pi f t)$

Comparing the last two expressions used immediately we see:
a. peak current $i_{0}=2 \mathrm{~A}$
b. effective current $I=\frac{i_{0}}{\sqrt{2}}=1.41 \mathrm{~A}$
c. rms current $=$ effective current $=1.41 \mathrm{~A}$
d. $40=2 \pi f$, thus $f \cong 6.37 \mathrm{~Hz}$
4. From the results of Problem 1, we can write:

$$
v(t)=25 \sin (20 \pi t)
$$

7. The current $i(\mathrm{t})=5 \sin (20 \mathrm{t})$ flows through a resistor of $R=15 \Omega$. The power lost is given by:

$$
P=I V=I^{2} \quad R=\left(\frac{25}{2}\right)(15) W
$$

or

$$
P=187.5 \mathrm{~W}
$$

11. This problem refers to the situation in Fig. 24.5. The capcitance $C=2 \mu F$, the resistance is $R=5 \times 10^{6} \Omega$, and the $D C$ voltage of the battery is $V=12 \mathrm{~V}$.
a. The initial current $i(0)=V / R=2.4 \times 10^{-6} \mathrm{~A}$
b. The time constant $\tau=R C=10 \mathrm{~s}$
c. The final charge $q(t=\infty)=C V=2.4 \times 10^{-5} \mathrm{C}$
d. $q(t=R C)=0.63 C V=1.51 \times 10^{-5} \mathrm{C}$
e. $i(t=R C)=0.37 i(0)=8.9 \times 10^{-7} \mathrm{~A}$
