Chapter 28 Solutions - 3, 5, 7, 9, 11, 12, 14, 17, 20, 21, 26, 28

3. This problem refers to $\operatorname{Sec} 28.1$, interference between waves. The waves of the two identical speakers, on at $x_{1}=0$ and the other at $x_{2}>0$, can add constructively (waves are in phase with each other) or destructively (waves are out of phase with each other). The person at $x_{\mathrm{p}}=$ $20 \mathrm{~m} \gg x_{2}$ hears loudest sounds when $x_{2}-x_{1}=\lambda, 2 \lambda, 3 \lambda \ldots \ldots$. Thus, with $\lambda=70 \mathrm{~cm}=0.7 \mathrm{~m}$ and $x_{2}<5 \mathrm{~m}$, the second speaker positions can be $0.0 \mathrm{~m}, 0.7 \mathrm{~m} ; 1.4 \mathrm{~m} ; 2.1 \mathrm{~m} ; 2.8 \mathrm{~m}, 3.5 \mathrm{~m}, 4.2 \mathrm{~m} ; 4.9 \mathrm{~m}$.
4. Again, this problem refers to Sec 28.1, recognizing now that the distance between the two speakers $x_{2}-x_{1}=1.4 \mathrm{~m}$ should be such that an odd number of half-wave lengths should fit between the two speakers:

$$
x_{2}-x_{1}=\frac{\lambda_{1}}{2}, \frac{3 \lambda_{2}}{2}, \frac{5 \lambda_{3}}{2}, \frac{7 \lambda_{4}}{2}, \text { etc. }
$$

Thus, $\lambda_{1}=2.8 \mathrm{~m} ; \lambda_{2}=0.93 \mathrm{~m} ; \lambda_{3}=0.56 \mathrm{~m}, \lambda_{4}=0.4 \mathrm{~m}$
7. This problem refers to Sec. 28.3, (see Fig 28.3 and 28.4). The slits are a distance $\mathrm{d}=0.070 \mathrm{~mm}=7 \times 10^{-5} \mathrm{~m}$ apart. The screen is at $h=$ 2 m .
a. The zeroth order fringe is the center of the pattern of fringes: by definition it is at $x=0$, and it is directly below the middle of the two slits. Therefore, the distances from the zeroth order fringe to the slits are the same: the difference is $\underline{0}$.
b. Difference for the first bright fringe x is such that

$$
\frac{x}{h}=\frac{\Delta S}{d}=\frac{\lambda}{d} \rightarrow x_{1}=\frac{\lambda h}{d}=1.56 \mathrm{~cm}
$$

c. $x_{2}=2 x_{1}=3.12 \mathrm{~cm}$
d. $x_{3}=3 x_{1}=\underline{4.68 \mathrm{~cm}}$
9. Again, as above, reference to Sec. 28.3. Slit separation $\mathrm{d}=0.100 \mathrm{~mm}=10^{-4} \mathrm{~m}$. Slit-to-screen distance $\mathrm{h}=1.5 \mathrm{~m}$. Yellow light wavelength λ $=589 \mathrm{~mm}=5.89 \times 10^{-7} \mathrm{~m}$.
a. Distance x from zeroth order bright fringe to third bright fringe is such that path length difference $\Delta \mathrm{S}=3 \lambda$, thus, with

$$
\frac{\Delta S}{d}=\frac{x}{h} \rightarrow x=\frac{(3 \lambda)(h)}{d}=2.65 \mathrm{~cm}
$$

b. To third dark fringe, $\Delta \mathrm{S}=\lambda / 2$, thus

$$
x=\frac{\Delta S}{d} h=2.21 \mathrm{~cm}
$$

11. Once more, see Sec. 28.3. With 8000 lines, $d=1 / 8000 \mathrm{~cm}=1.25 \times 10^{-6} \mathrm{~m}$.
a. The angle $\theta_{2}=72^{\circ}$ for second order maximum, for which $\Delta S=2 \lambda$. Thus, with

$$
\begin{aligned}
& \sin \theta_{2}=\frac{\Delta S}{d}=\frac{2 \lambda}{d} \\
& \rightarrow \lambda=\frac{d}{2} \sin \theta_{2}=5.94 \times 10^{-7} \mathrm{~m}=594 \mathrm{~nm}
\end{aligned}
$$

b. For third order maximum we will have

$$
\sin \theta_{3}=\frac{3 \lambda}{d}=\frac{(3)\left(5.94 \times 10^{-7} m\right)}{1.25 \times 10^{-6} m}=1.43>1 \text { : impossible [Third order maximum is invisible.] }
$$

12. See Sec 28.4. A helium-neon laser has $\lambda=633 \mathrm{~nm}=6.33 \times 10^{-7} \mathrm{~m}$. First order maximum occurs at $\theta_{1}=52^{\circ}$, on each side of central maximum.
a. Using Eq. (28.2) we can express the distance d between centers of grating lines:

$$
\lambda=d \sin \theta, \rightarrow d=\frac{\lambda}{\sin \theta_{1}}=8.0 \times 10^{-7} m
$$

b. The number of grating lines per centimeter is simply

$$
\frac{1}{d}=1.24 \times 10^{4} / \mathrm{cm}
$$

14. Diffraction grating has 9000 lines $/ \mathrm{cm}$, thus

$$
d=\frac{1}{9000 \text { lines } / \mathrm{cm}} \text { or } d=1.11 \times 10^{-6} \mathrm{~m}
$$

Light's wavelength $\lambda=582 \mathrm{~mm}=5.82 \times 10^{-7} \mathrm{~m}$.
a. Angle θ_{1}, for first order maximum occurs when, $\lambda=d \sin \theta_{1}$

$$
\rightarrow \sin \theta_{1}=\frac{\lambda}{d} \rightarrow \theta_{1}=31.6^{\circ}
$$

b. Second order maximum at θ_{2} such that,

$$
\begin{aligned}
& \sin \theta_{2}=\frac{2 x}{d} \rightarrow \theta_{2}=\text { impossible! } \\
& {\left[\sin \theta_{2}=1.049>1\right]}
\end{aligned}
$$

17. For a single slit case, see Fig 28.9. Wavelength of the light is $\lambda=5.79 \times 10^{-7} \mathrm{~m}$, and the slit width $w=0.020 \mathrm{~mm}=2 \times 10^{-5} \mathrm{~m}$. Thus, the half-width angle of the bright spot is $\sin \theta_{\mathrm{c}}=\lambda / w$, thus

$$
\theta_{c}=\sin ^{-1}\left(\frac{\lambda}{w}\right)=1.66^{\circ}
$$

20. This problem refers to Sec. 28.6. The angular resolution $\theta_{\mathcal{C}}$, with which the Yerkes telescope can see spots on the Moon is given by

$$
\sin \theta_{c}=1.22 \lambda / D=1.22 \frac{5.5 \times 10^{-7} m}{1.02 m}
$$

The linear resolution is now

$$
\begin{aligned}
& d=R_{E M} \sin \theta_{c}=R_{E M}\left(1.22 \frac{\lambda}{D}\right)=\left(3.84 \times 10^{8} m\left(1.22 \frac{5.5 \times 10^{-7} m}{1.02 m}\right)\right. \\
& d=252.6 m
\end{aligned}
$$

21. Again, Sec 28.6 is involved. Now lens diameter $D=0.25 \mathrm{~cm}=2.5 \times 10^{-3} \mathrm{~m}$, and the light's wavelength is $\lambda=500 \mathrm{~mm}=5 \times 10^{-7} \mathrm{~m}$. If we want millimeter lines to still be clearly discernible, then $d=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$. Now, what should be distance h ? It is obvious that,

$$
\begin{aligned}
& \sin \theta_{c}=1.22 \frac{\lambda}{D}=\frac{d}{h} \\
& \text { or : } \quad h=\frac{d D}{1.22 \lambda}=\frac{\left(10^{-3} m\right)\left(2.5 \times 10^{-3} m\right)}{(1.22)\left(5 \times 10^{-7} m\right)} \\
& h=4.10 m
\end{aligned}
$$

26. Refer to Fig 28.11. The separation x, given the strongest reflections, should be such that $x=n \lambda / 2(n=1,2,3,4, \ldots)$ with λ the light's wavelength, $\lambda=4.4 \times 10^{-7} \mathrm{~m}$.

27. Again, Fig 28.11. Now, for near zero reflection ("near" became reflection not transmission perfect from second glass plate!) $x=(n+1 / 2)$ $\lambda / 2$ gap widths, $\lambda=5.46 \times 10^{-7} \mathrm{~m}$.

For the first four zero reflection distances, $\underline{x=(1.1,3.3,5.5,7.7) \times 10^{-7} \mathrm{~m}}$

