current is defined as 1 Ampere (A). Therefore a current of 0.5 A must represent a charge flow of 0.5 C per second. Also, since the charge of a single electron has a magnitude of $1.6 \times 10^{-19} \mathrm{C}, 0.50 \mathrm{C}$ must be

$$
(0.5 \mathrm{C}) /\left(1.6 \times 10^{-19} \mathrm{C} \text { per electron }\right)=3.1 \times 10^{18} \text { electrons. }
$$

25. As stated in the last problem, the current = (the charge passed)/(time). Thus,

$$
I=\left(1 \times 10^{-9} \mathrm{C}\right) /\left(1 \times 10^{-7} \mathrm{~s}\right)=0.01 \mathrm{~A} .
$$

26. A resistor is a circuit element that limits how much current passes through when a voltage difference is applied across it. Ohm's law defines resistance through the relation $V=I R$, where the proportionality constant R is called the resistance. If 1 A flows when a voltage drop of 1 V is applied to a resistor the element is said to have a resistance of 1 ohm . "Ohms" is expressed by the Greek Letter "capital omega," but since some browsers do not support Greek letters I will always write out the word ohms. In this problem, a current of 3 A flows through a 12 -ohm resistor. Thus,

$$
V=I R=(3 \mathrm{~A})(12 \mathrm{ohms})=36 \mathrm{~V} .
$$

30. Notice that the rules by which resistors in combination are evaluated to obtain equivalent resistance is opposite in form when compared with capacitors. Assume the three resistors 5, 7 and 9 ohms.
a. In series, total resistance is the sum of the three individual resistances.

$$
R_{\mathrm{eff}}=5 \text { ohms }+7 \text { ohms }+9 \text { ohms }=21 \text { ohms. }
$$

b. In parallel the effective resistance is found from $1 / R_{\text {eff }}=(1 / 5+1 / 7+1 / 9)$ ohms $^{-1}$. Evaluating this sum by using the common denominator method gives

$$
1 / R_{\mathrm{eff}}=143 / 315 \mathrm{ohms}^{-1} \text { or } R_{\mathrm{eff}}=2.2 \text { ohms. }
$$

35. The 5-ohm and 4-ohm resistors are in parallel. These two should be combined first to get an "first step" value of resistance. I will call it R'
$1 / R^{\prime}=(1 / 5+1 / 4)$ ohms $^{-1}$ or $R^{\prime}=(20 / 9)$ ohms $=2.2$ ohms.
Then this equivalent resistance of the parallel pair is in series with the 3-ohm resistor. Therefore,
$R_{\text {eff }}=R^{\prime}+3$ ohms $=(2.2+3.0)$ ohms $=5.2$ ohms.
