19. Refer to Figure 21-10 in the book, with all switches closed. The current through each bulb is found from $P=I V$. Since each branch sees the same voltage, the currents are, starting with the left bulb,

$$
\begin{aligned}
& I_{1}=(60 \mathrm{~W}) /(110 \mathrm{~V})=0.545 \mathrm{~A}, \\
& I_{2}=(100 \mathrm{~W}) /(110 \mathrm{~V})=0.909 \mathrm{~A}, \\
& I_{3}=(100 \mathrm{~W}) /(110 \mathrm{~V})=0.909 \mathrm{~A}, \\
& I_{4}=(40 \mathrm{~W}) /(110 \mathrm{~V})=0.364 \mathrm{~A} .
\end{aligned}
$$

The current through the fuse is the sum of currents in all the parallel branches. Thus,

$$
I_{\text {total }}=0.545+0.909+0.909+0.364=2.73 \mathrm{~A} .
$$

21. Each 75 -watt bulb takes a current of $I=(75 \mathrm{~W}) /(120 \mathrm{~V})=0.625 \mathrm{~A}$. Therefore, the number of bulbs that can be on at the same time is (20 $\mathrm{A}) /(0.625$ A per bulb $)=32$ bulbs. If a 1200 -watt iron is on, the iron takes $I=(1200 \mathrm{~W}) /(120 \mathrm{~V})=10 \mathrm{~A}$. Since half of the 20 A line
current supplies the iron, only 10 amps is available to supply the bulbs and not blow the circuit. A limit of 16 bulbs can be lighted.
22. The figure shows the battery circuit, including a 3.0 -ohm resistor. The points "a" and "b" are the real battery terminals, and R_{B} is the internal resistance of the battery itself. When no current flows, the terminal voltage is indeed 1.55 V . However, when current flows, there is a voltage drop across the internal resistance R_{B} of the battery. Consequently, the terminal voltage is reduced by this internal loss. We are given that when the battery is hooked across a 3-ohm resistor, only 0.120 A flows. This implies that the terminal voltage is only

$$
V_{\mathrm{ab}}=(0.12 \mathrm{~A})(3.0 \mathrm{ohms})=0.36 \mathrm{~V} .
$$

The voltage drop across the internal resistance is $1.55 \mathrm{~V}-0.36 \mathrm{~V}=1.19 \mathrm{~V}$. This drop at a current of 0.12 A tells us $R_{\mathrm{B}}=(1.19 \mathrm{~V}) /(0.12$ A) $=9.9$ ohms.

26. If $I=3.0 \mathrm{~A}$, the 80 A-hour battery is "drained" in $(80 \mathrm{~A}$-hour $) /(3.0 \mathrm{~A})=26.7$ hours. The total energy expended may be determined once the power expended by the battery is known. But

$$
\begin{aligned}
& P=I V=(3.0 \mathrm{~A})(12.0 \mathrm{~V})=36 \text { watts }=36 \mathrm{Joules} / \mathrm{s} . \\
& \text { Energy expended }=(36 \mathrm{~J} / \mathrm{s})(27.6 \text { hours })(3600 \mathrm{~s} / \mathrm{hr})=3.5 \times 10^{6} \mathrm{~J} .
\end{aligned}
$$

39. You draw the circuit this time and define the currents as follows (so that your equations agree with mine):

Let I_{1} go through R_{1} to the right.
Let I_{2} go through R_{2} to the right.
Let I_{3} go through R_{3} and R_{4} to the left.
Now write the junction equation for the right-hand node, the loop equation for the upper loop, and the loop equation for the outside loop. You should get the following three equations.

I_{1}	$+I_{2}$	$-I_{3}=$
$-7 I_{1}$	$+3 I_{2}$	$=0$
$-7 I_{1}$		$-6.0 I_{3}=$
	-1.0	

Now multiply equation (1) by 3 and subtract your result from equation (2), thereby eliminating I_{2}. This result, along with equation (3) forms a pair of simultaneous equation in I_{1} and I_{3}. Solving this pair leads to the result $I_{3}=-0.21 \mathrm{~A}$.
45. An energy of 10 J expended in 4 seconds implies a power of $(10 \mathrm{~J}) /(4 \mathrm{~s})=2.5$ watts.

Since $P=I^{2} R$, the current through the 2 -ohm resistor can be found

$$
I^{2}=(2.5 \mathrm{~W}) /(2 \mathrm{ohms})=1.25 \mathrm{~A}^{2} \text {, or } I=1.118 \mathrm{~A} .
$$

Finally, since the total resistance of the three series resistors is 6 ohms, the voltage driving the known current 1.118 A is $E=I R_{\text {eff }}=(1.118$ A) $(6 \mathrm{ohms})=6.7 \mathrm{~V}$.

