33. As in problem 31, we will change the words illuminance to intensity. Since the source is a point source, the radiation is isotropic. The logic is the same as for problem 25 above. Since we have a point source, the radiation from the source obeys the inverse square law. Since 80 cm is 8 times as far from the source as 10 cm , the intensity at 80 cm is $(1 / 8)^{2}$ the intensity at 10 cm . As a result, $I($ at 80 cm$)=(2000$ units $) / 64=31$ units
34. Gamma rays source, point-size, has intensity I independent of distance, see Sec.25.14. Thus, the intensity at $R=20 \mathrm{~cm}$ is the same at $R=60 \mathrm{~cm}$.
35. Once more, the magic word point source is used. This means the source is isotropic. The data tell us that the X-ray intensity at the unknown point P is 1% of the intensity at 5 cm . But 1% implies that the intensity at point P is $1 / 100$ the intensity at 5 cm . We now set up the usual ratio.
$I($ at point $P) / I($ at 5 cm$)=1 / 100=[(5 \mathrm{~cm}) / P]^{2} \rightarrow P=50 \mathrm{~cm}$.
36. This problem refers to Sec. 25.15 .

The lamp of intensity $\mathrm{I}_{60}=60 \mathrm{~W}$ givens an illuminance

$$
E_{60}=\frac{I_{60}}{R_{60}^{2}}, R_{60}=4 f t
$$

A lamp of intensity $I_{100}=100 \mathrm{~W}$ gives at distance above a table R_{100} an illuminance

$$
E_{100}=I_{100} / R_{100}^{2}
$$

We want this to be

$$
E_{100}=E_{60}, \text { or }
$$

$$
\begin{aligned}
& \frac{\mathrm{I}_{100}}{\mathrm{R}_{60}^{2}}=3 \frac{\mathrm{I}_{60}}{\mathrm{R}_{60}^{2}} \\
& \rightarrow \quad R_{100}=R_{60}\left(\frac{I_{100}}{3 I_{60}}\right)^{1 / 2}=2.98 \mathrm{ft}
\end{aligned}
$$

