Chapter 28 Solutions-3, 5, 7, 9, 11, 12, 14, 17, 20, 21, 26, 28

3. This problem refers to Sec 28.1 , interference between waves. The waves of the two identical speakers, on at $x_{1}=0$ and the other at $x_{2}>0$, can add constructively (waves are in phase with each other) or destructively (waves are out of phase with each other). The person at $x_{\mathrm{p}}=$ $20 \mathrm{~m} \gg x_{2}$ hears loudest sounds when $x_{2}-x_{1}=\lambda, 2 \lambda, 3 \lambda \ldots \ldots$. Thus, with $\lambda=70 \mathrm{~cm}=0.7 \mathrm{~m}$ and $x_{2}<5 \mathrm{~m}$, the second speaker positions can be $0.0 \mathrm{~m}, 0.7 \mathrm{~m} ; 1.4 \mathrm{~m} ; 2.1 \mathrm{~m} ; 2.8 \mathrm{~m}, 3.5 \mathrm{~m}, 4.2 \mathrm{~m} ; 4.9 \mathrm{~m}$.
4. Again, this problem refers to Sec 28.1, recognizing now that the distance between the two speakers $x_{2}-x_{1}=1.4 \mathrm{~m}$ should be such that an odd number of half-wave lengths should fit between the two speakers:

$$
x_{2}-x_{1}=\frac{\lambda_{1}}{2}, \frac{3 \lambda_{2}}{2}, \frac{5 \lambda_{3}}{2}, \frac{7 \lambda_{4}}{2}, \text { etc. }
$$

Thus, $\lambda_{1}=2.8 \mathrm{~m} ; \lambda_{2}=0.93 \mathrm{~m} ; \lambda_{3}=0.56 \mathrm{~m}, \lambda_{4}=0.4 \mathrm{~m}$
7. This problem refers to Sec. 28.3, (see Fig 28.3 and 28.4). The slits are a distance $\mathrm{d}=0.070 \mathrm{~mm}=7 \times 10^{-5} \mathrm{~m}$ apart. The screen is at $h=$ 2 m .
a. The zeroth order fringe is the center of the pattern of fringes: by definition it is at $x=0$, and it is directly below the middle of the two slits. Therefore, the distances from the zeroth order fringe to the slits are the same: the difference is $\underline{0}$.
b. Difference for the first bright fringe x is such that

$$
\frac{x}{h}=\frac{\Delta S}{d}=\frac{\lambda}{d} \rightarrow x_{1}=\frac{\lambda h}{d}=1.56 \mathrm{~cm}
$$

c. $x_{2}=2 x_{1}=3.12 \mathrm{~cm}$
d. $x_{3}=3 x_{1}=\underline{4.68 \mathrm{~cm}}$
9. Again, as above, reference to Sec. 28.3. Slit separation $\mathrm{d}=0.100 \mathrm{~mm}=10^{-4} \mathrm{~m}$. Slit-to-screen distance $\mathrm{h}=1.5 \mathrm{~m}$. Yellow light wavelength λ $=589 \mathrm{~mm}=5.89 \times 10^{-7} \mathrm{~m}$.
a. Distance x from zeroth order bright fringe to third bright fringe is such that path length difference $\Delta \mathrm{S}=3 \lambda$, thus, with

$$
\frac{\Delta S}{d}=\frac{x}{h} \rightarrow x=\frac{(3 \lambda)(h)}{d}=2.65 \mathrm{~cm}
$$

b. To third dark fringe, $\Delta \mathrm{S}=\lambda / 2$, thus

$$
x=\frac{\Delta S}{d} h=2.21 \mathrm{~cm}
$$

