Announcements

- NO IN-PERSON CLASS ON MONDAY, ZOOM ONLY, LINK ON COURSE ANNOUNCEMENTS PAGE
- Reading: Secs. 12.1-12.6,12.9s
- Test 1 on Friday 9/30 in class covers Chs. 8,12,13
- Format: $\sim 1 / 3$ short answer/identification, $\sim 2 / 3$ easy HW-type problems
- BUT: hurricane coming???
- Resources for test studying:
a) GRE prep https://www.asc.ohio-state.edu/physics/ugs/livesite/ugs gre.php
b) UF graduate prelim exam https://www.phys.ufl.edu/wp/index.php/graduate/preliminary-exam/
- QUIZ 3

Last time: Chaos through example of Driven Dissipative Pendulum

General: nonlinear, inhomogeneous ODE's
Eqn. in, e.g. $x(t)$:

- nonlinear means no powers of $x, x^{\prime}, x^{\prime \prime}$ other than 1
- inhomogeneous: term that doesn't depend on x. E.g. "driving force"

$$
\ddot{\phi}+\frac{b}{m} \dot{\phi}+\frac{g}{L} \sin \phi=\frac{F_{\mathrm{o}}}{m L} \cos \omega t .
$$

Period doubling route to chaos in dissipative driven pendulum (DDP)

short t: "transient" region

$$
\ddot{\phi}+2 \beta \dot{\phi}+\omega_{\mathrm{o}}^{2} \sin \phi=\gamma \omega_{\mathrm{o}}^{2} \cos \omega t . \quad \gamma=\text { dimensionless "driving force" }
$$

Initial conditions: $\phi(0)=0, \phi^{\prime}(0)=0$

Sensitivity to initial conditions in

 range of large drive γ

Two solutions for the same DDP, with the same drive strengths, but different initial conditions $[\phi(0)=\dot{\phi}(0)=0$ for the dashed curve, but $\phi(0)=-\pi / 2$ and $\dot{\phi}(0)=0$ for the solid curve]. Even after the transients have died out, the two motions are totally different.

Two identical DDPs, with initial angle separated by 10^{-4} radians

"Universality" of transitions to chaos

Record values of g where period doubles: "bifurcation points"

$$
\begin{array}{cccc}
n & \text { period } & \gamma_{n} & \text { interval } \\
\hline 1 & 1 \rightarrow 2 & 1.0663 & \\
2 & 2 \rightarrow 4 & 1.0793 & 0.0130 \\
& & & 0.0028 \\
3 & 4 \rightarrow 8 & 1.0821 & \\
4 & 8 \rightarrow 16 & 1.0827 & \\
\hline
\end{array}
$$

$$
\left(\gamma_{n+1}-\gamma_{n}\right) \approx \frac{1}{\delta}\left(\gamma_{n}-\gamma_{n-1}\right)
$$

$$
\delta=4.6692016
$$

Feigenbaum number

Called "universal" because it's the same number that shows up in many applications of period doubling:
a) Oscillating chemical reactions:
https://www.youtube.com/watch?v=PYxInARIhLY
b) Rayleigh-Bernard convection: fluid heated from below.
c) Nonlinear growth models for populations (Lokta-Volterra)
b) Logistical (Feigenbaum) map, similar nonlinear maps.

Period doubling transition to chaos: take 100 measurements of ϕ at times separated by T, 2T,100T for different drives γ

Logistical map (discrete "time")

$$
n_{t+1}=f\left(n_{t}\right)=r n_{t}\left(1-n_{t} / N\right)
$$

where n_{t} is a number that depends on integer parameter $t=1,2,3, \ldots$ and N is a large integer

- without the $-n t / N$, this is an exponential growth model, $f(n)=r^{\wedge} t n 0$
- with the $-n t / N$, this is a growth model where growth is slowed when $n \sim N$
- Popularized by Robert May in 1975 for biology
- Period doubling and universality discovered by Mitch Feigenbaum in 1975 with HP-65 pocket calculator

Fixed points of discrete maps

Figure 12.34 The relative population $x_{t}=n_{t} / N$ for the logisitic map (12.42), with two different initial conditions for each of two different growth rates. (a) With the growth parameter $r=0.8$, the population rapidly approaches zero whether $x_{0}=0.1$ or $x_{0}=0.5$. (b) With $r=1.5$ and the same two initial conditions, the population approaches the fixed value 0.33 .

Note asymptotic large "time" values of x_{t} : "fixed points" of maps, where $x_{t+1}=x_{t}$. In general, if $x_{t+1}=f\left(x_{t}\right)$, then fix pt. x^{*} defined by $f\left(x^{*}\right)=x^{*}$.
Trivial example: $x_{t+1}=x_{t}^{2}$ has fixed points 0 and 1. For logistic map, $x^{*}=0$ or $(r-1) / r$.

Double pendulum (no damping!)

