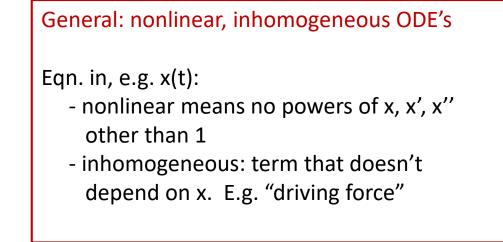
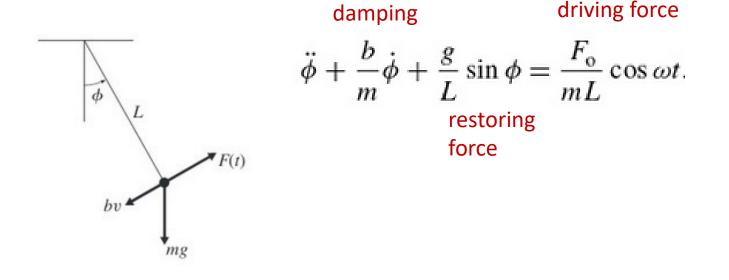
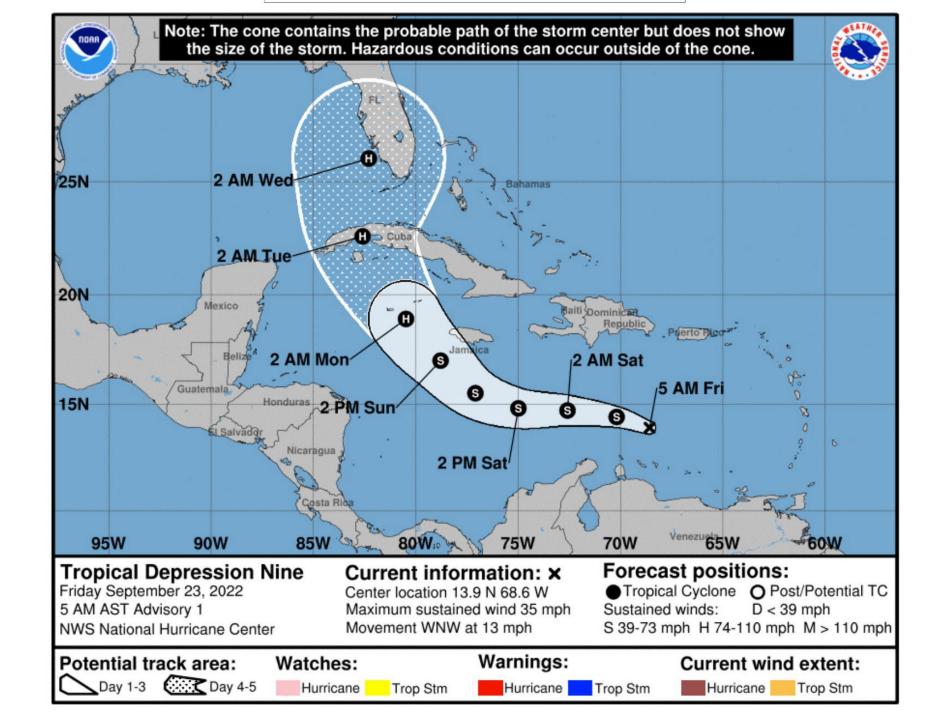
Announcements

- NO IN-PERSON CLASS ON MONDAY, ZOOM ONLY, LINK ON COURSE ANNOUNCEMENTS PAGE
- Reading: Secs. 12.1-12.6,12.9s
- Test 1 on Friday 9/30 in class covers Chs. 8,12,13
- Format: ~1/3 short answer/identification, ~2/3 easy HW-type problems
- BUT: hurricane coming???
- Resources for test studying:
 - a) GRE prep <u>https://www.asc.ohio-state.edu/physics/ugs/livesite/ugs_gre.php</u>
 - b) UF graduate prelim exam https://www.phys.ufl.edu/wp/index.php/graduate/preliminary-exam/
- QUIZ 3

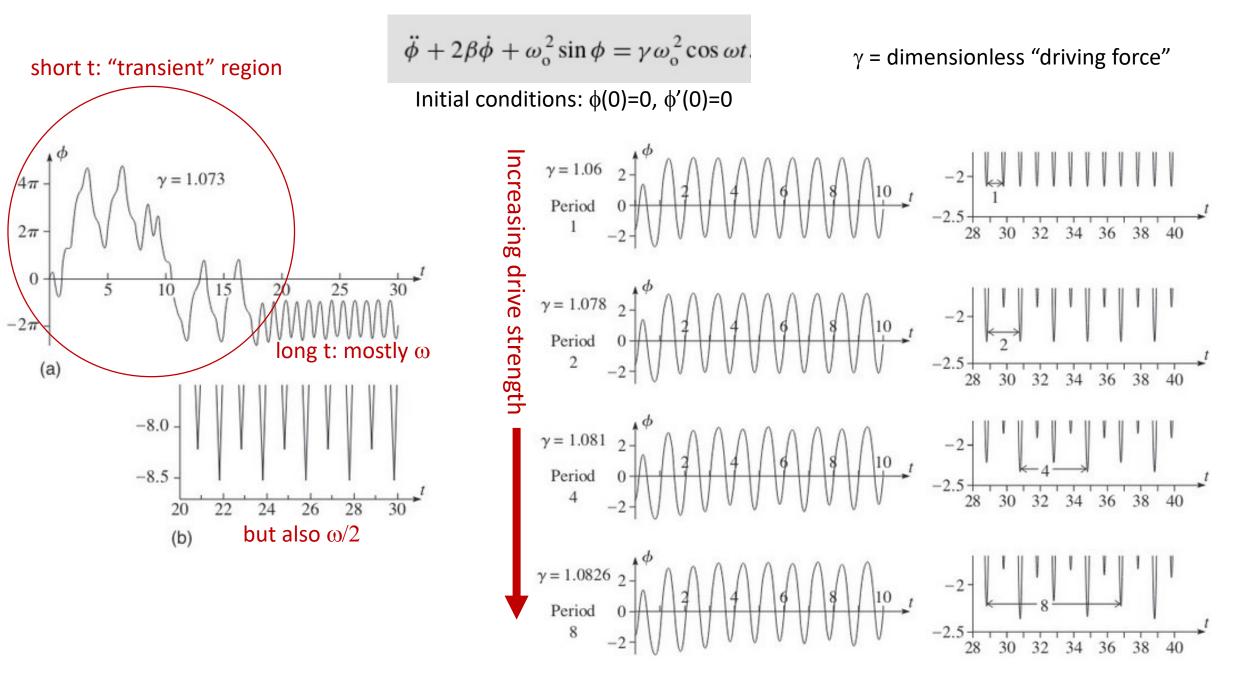
Last time: Chaos through example of Driven Dissipative Pendulum



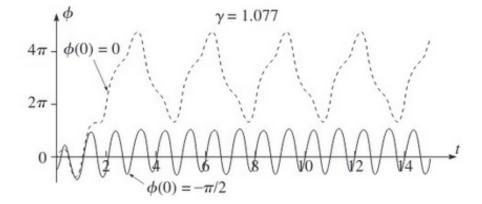




Period doubling route to chaos in dissipative driven pendulum (DDP)

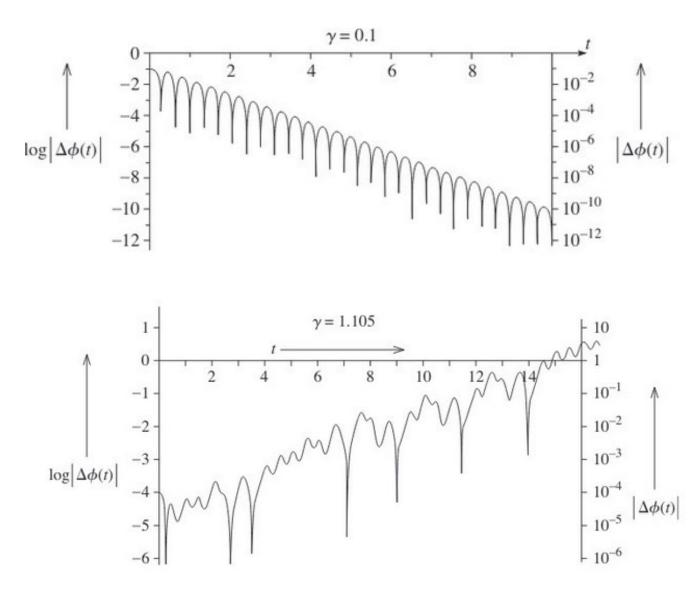


Sensitivity to initial conditions in range of large drive γ



Two solutions for the same DDP, with the same drive strengths, but different initial conditions $[\phi(0) = \dot{\phi}(0) = 0$ for the dashed curve, but $\phi(0) = -\pi/2$ and $\dot{\phi}(0) = 0$ for the solid curve]. Even after the transients have died out, the two motions are totally different.

Two identical DDPs, with initial angle separated by 10⁻⁴ radians



t=0

 φ_1

 ϕ_2

"Universality" of transitions to chaos

Record values of g where period doubles: "bifurcation points"

n	period	γ_n	interval
1	$1 \rightarrow 2$	1.0663	
			0.0130
2	$2 \rightarrow 4$	1.0793	
			0.0028
3	$4 \rightarrow 8$	1.0821	
			0.0006
4	$8 \rightarrow 16$	1.0827	

$$(\gamma_{n+1}-\gamma_n)\approx \frac{1}{\delta}(\gamma_n-\gamma_{n-1})$$

 $\delta = 4.6692016$

Feigenbaum number

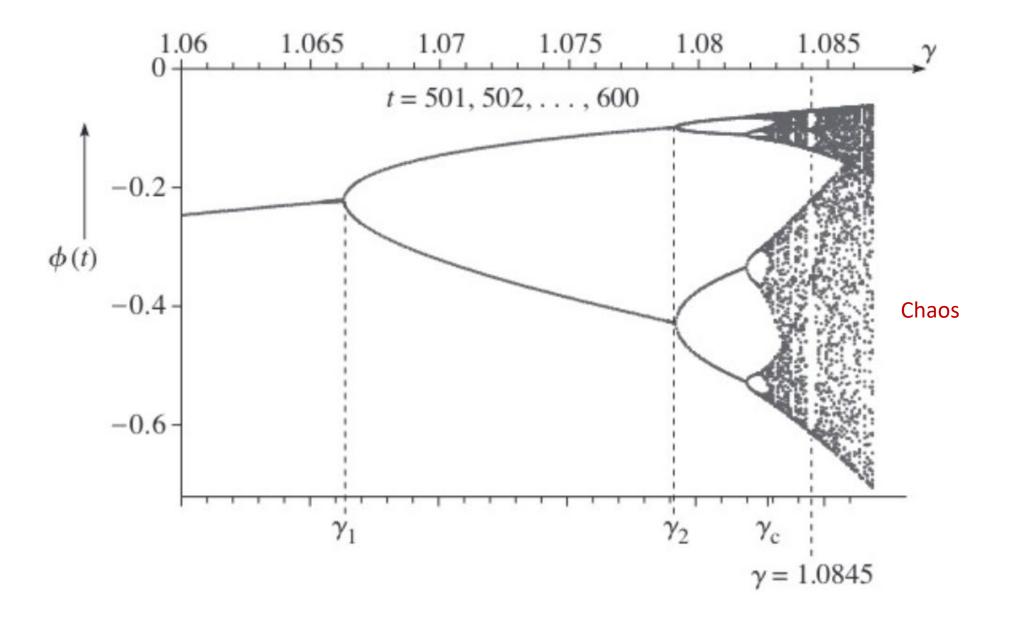
Called "universal" because it's the same number that shows up in many applications of period doubling:

a) Oscillating chemical reactions:

https://www.youtube.com/watch?v=PYxInARIhLY

- b) Rayleigh-Bernard convection: fluid heated from below.
- c) Nonlinear growth models for populations (Lokta-Volterra)
- b) Logistical (Feigenbaum) map, similar nonlinear maps.

Period doubling transition to chaos: take 100 measurements of ϕ at times separated by T, 2T,100T for different drives γ

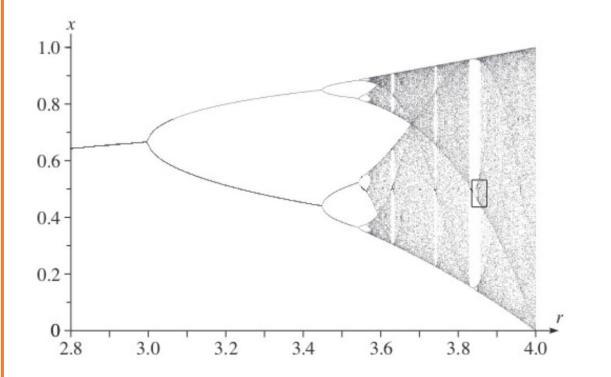


Logistical map (discrete "time")

$$n_{t+1} = f(n_t) = rn_t(1 - n_t/N)$$

where n_t is a number that depends on integer parameter t=1,2,3,... and N is a large integer

- without the -nt/N, this is an exponential growth model, f(n) = r^t n0
- with the *-nt/N*, this is a growth model where growth is slowed when *n~N*
- Popularized by Robert May in 1975 for biology
- Period doubling and universality discovered by Mitch Feigenbaum in 1975 with HP-65 pocket calculator



Fixed points of discrete maps

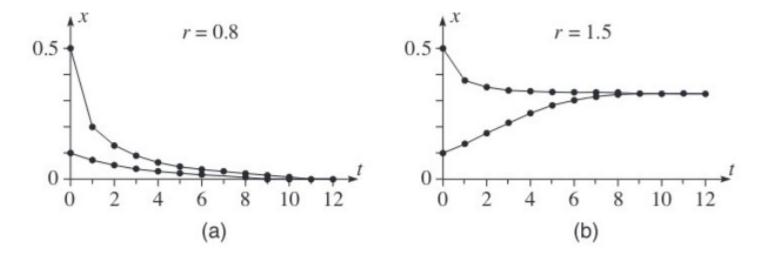
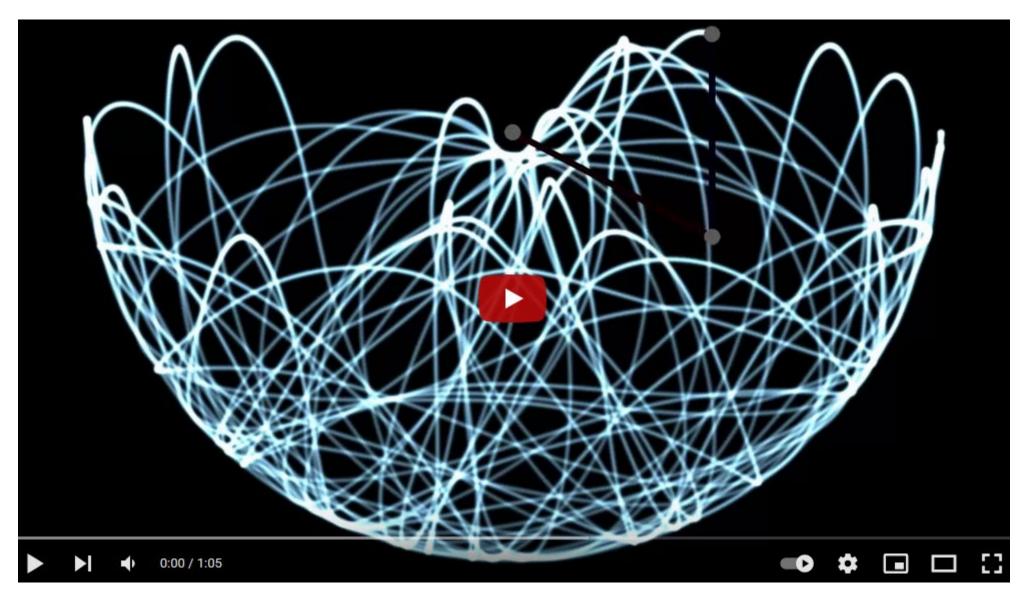


Figure 12.34 The relative population $x_t = n_t/N$ for the logisitic map (12.42), with two different initial conditions for each of two different growth rates. (a) With the growth parameter r = 0.8, the population rapidly approaches zero whether $x_0 = 0.1$ or $x_0 = 0.5$. (b) With r = 1.5 and the same two initial conditions, the population approaches the fixed value 0.33.

Note asymptotic large "time" values of x_t : "fixed points" of maps, where $x_{t+1}=x_t$. In general, if $x_{t+1}=f(x_t)$, then fix pt. x* defined by $f(x^*)=x^*$. Trivial example: $x_{t+1}=x_t^2$ has fixed points 0 and 1. For logistic map, x*=0 or (r-1)/r. Double pendulum (no damping!)



https://www.youtube.com/watch?v=QXf95 EKS6E