
Catenary

The catenary curve (from the Latin for “chain”) is the shape assumed by a uniform chain of

fixed length supported at its ends under the influence of gravity. Let the curve be described

by a function y(x) with endpoints y(x1) = y1, y(x2) = y2. Let µ be the (constant) mass per

unit length. The shape is then found by minimizing the gravitational potential energy,

E[y(x)] =
∑

mgh =

∫
µg y(x) ds

∫
µgy

√
1 + y′2 dx,

while fixing the length

s[y(x)] =

∫ x2

x1

√
1 + y′2 dx = `.

(A functional J [y(x)] is an operation that takes as its argument the function y(x) and yields

a number: energy, length, “action,” . . . .) Impose the constraint with a Lagrange multiplier

and extremize the action

J = E + λ(s − `) =

∫
(λ + µgy)

√
1 + y′2 dx − λ`.

As in Section 6.5 in the text, varying y(x) leads to the Euler equation,

∂f

∂y
− d

dx

∂f

∂y′ = µg

√
1 + y′2 − d

dx

[
(λ + µgy)y′√

1 + y′2

]

=
µg(1 + y′2)2

(
√

1 + y′2)3
− λy′′ + µg(yy′′ + y′2 + y′4)

(
√

1 + y′2)3
=

µg(1 + y′2 − yy′′) − λy′′

(
√

1 + y′2)3
= 0.

The expression is simpler than it might have been because the derivative

d

dx

y′√
1 + y′2

=
y′′

(
√

1 + y′2)3

comes out nice (for exponents other than 2 inside the square root there are more terms),

and because y′4 terms cancel between the ∂f/∂y and ∂f/∂y′ terms. Variation of λ leads to

∂J

∂λ
=

∫ x2

x1

√
1 + y′2 dx − ` = 0.

Thus, after all this effort we are led to a deceptively simple-looking differential equation plus

an integral constraint,

(λ/µg + y) y′′ = 1 + y′2,
∫ x2

x1

√
1 + y′2 dx = `. (∗)

which we must solve for given boundary conditions.
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The solution makes use of properties of the hyperbolic functions

cosh x = 1
2(ex + e−x), sinh x = 1

2(ex − e−x),

and in particular the properties

d

dx
cosh x = sinh x,

d

dx
sinh x = cosh x, cosh2 x = 1 + sinh2 x.

Thus, the function y = cosh x satisfies y y′′ = 1+y′2, This is not yet the solution, because we

still have to account for boundary conditions and the constraint. First note that y y′′ = 1+y′2
remains true after a scaling, y = a cosh(x/a). This is good because x actually has units,

while the argument of cosh must be dimensionless; and also because it will allow us to satisfy

the length constraint. We can also translate the minimum anywhere we need by shifting x

to x−b. Finally, we must address the λ/µg term, but that can be done by adding a constant

to y. So, with all of this we have the general shape of the curve

y(x) = a cosh
(x − b

a

)
+ c, y′ = sinh

(x − b

a

)
, y′′ =

1

a
cosh

(x − b

a

)
.

This function satisfies the differential equation for any values of a, b, and c, as long as

λ/µg + c = 0, which determines λ. The value of the coefficients a, b, c are determined by

the length constraint,

s =

∫ x2

x1

√
1 + y′2 dx =

∫ x2

x1

√
1 + sinh2

(x − b

a

)
dx

=

∫ x2

x1

cosh
(x − b

a

)
dx = a

[
sinh

(x2 − b

a

)
− sinh

(x1 − b

a

)]
= `.

plus boundary conditions.

As an example, let x1 = −1
2d and x2 = 1

2d, with y1 = y2 = h. Symmetry in ±x says b = 0.

Then the length constraint says
sinh(d/2a)

(d/2a)
=

`

d
,

which, since sinh x > x, has a solution for any ` ≥ d and serves to determine a; and the

value y = h at x = ±d fixes c.

The figure (following page) shows results for chains of various lengths. The longest one falls

below y = 0.
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Catenary Curves


