Catenary

The catenary curve (from the Latin for "chain") is the shape assumed by a uniform chain of fixed length supported at its ends under the influence of gravity. Let the curve be described by a function $y(x)$ with endpoints $y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}$. Let μ be the (constant) mass per unit length. The shape is then found by minimizing the gravitational potential energy,

$$
E[y(x)]=\sum m g h=\int \mu g y(x) d s \int \mu g y \sqrt{1+y^{\prime 2}} d x
$$

while fixing the length

$$
s[y(x)]=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x=\ell
$$

(A functional $J[y(x)]$ is an operation that takes as its argument the function $y(x)$ and yields a number: energy, length, "action,") Impose the constraint with a Lagrange multiplier and extremize the action

$$
J=E+\lambda(s-\ell)=\int(\lambda+\mu g y) \sqrt{1+y^{2}} d x-\lambda \ell
$$

As in Section 6.5 in the text, varying $y(x)$ leads to the Euler equation,

$$
\begin{aligned}
\frac{\partial f}{\partial y} & -\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=\mu g \sqrt{1+y^{\prime 2}}-\frac{d}{d x}\left[\frac{(\lambda+\mu g y) y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right] \\
& =\frac{\mu g\left(1+y^{\prime 2}\right)^{2}}{\left(\sqrt{1+y^{\prime 2}}\right)^{3}}-\frac{\lambda y^{\prime \prime}+\mu g\left(y y^{\prime \prime}+y^{\prime 2}+y^{\prime 4}\right)}{\left(\sqrt{1+y^{\prime 2}}\right)^{3}}=\frac{\mu g\left(1+y^{\prime 2}-y y^{\prime \prime}\right)-\lambda y^{\prime \prime}}{\left(\sqrt{1+y^{\prime 2}}\right)^{3}}=0 .
\end{aligned}
$$

The expression is simpler than it might have been because the derivative

$$
\frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=\frac{y^{\prime \prime}}{\left(\sqrt{1+y^{\prime 2}}\right)^{3}}
$$

comes out nice (for exponents other than 2 inside the square root there are more terms), and because $y^{\prime 4}$ terms cancel between the $\partial f / \partial y$ and $\partial f / \partial y^{\prime}$ terms. Variation of λ leads to

$$
\frac{\partial J}{\partial \lambda}=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x-\ell=0
$$

Thus, after all this effort we are led to a deceptively simple-looking differential equation plus an integral constraint,

$$
\begin{equation*}
(\lambda / \mu g+y) y^{\prime \prime}=1+y^{\prime 2}, \quad \int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x=\ell \tag{*}
\end{equation*}
$$

which we must solve for given boundary conditions.

The solution makes use of properties of the hyperbolic functions

$$
\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \quad \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)
$$

and in particular the properties

$$
\frac{d}{d x} \cosh x=\sinh x, \quad \frac{d}{d x} \sinh x=\cosh x, \quad \cosh ^{2} x=1+\sinh ^{2} x
$$

Thus, the function $y=\cosh x$ satisfies $y y^{\prime \prime}=1+y^{\prime 2}$, This is not yet the solution, because we still have to account for boundary conditions and the constraint. First note that $y y^{\prime \prime}=1+y^{\prime 2}$ remains true after a scaling, $y=a \cosh (x / a)$. This is good because x actually has units, while the argument of cosh must be dimensionless; and also because it will allow us to satisfy the length constraint. We can also translate the minimum anywhere we need by shifting x to $x-b$. Finally, we must address the $\lambda / \mu g$ term, but that can be done by adding a constant to y. So, with all of this we have the general shape of the curve

$$
y(x)=a \cosh \left(\frac{x-b}{a}\right)+c, \quad y^{\prime}=\sinh \left(\frac{x-b}{a}\right), \quad y^{\prime \prime}=\frac{1}{a} \cosh \left(\frac{x-b}{a}\right) .
$$

This function satisfies the differential equation for any values of a, b, and c, as long as $\lambda / \mu g+c=0$, which determines λ. The value of the coefficients a, b, c are determined by the length constraint,

$$
\begin{aligned}
s & =\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime 2}} d x=\int_{x_{1}}^{x_{2}} \sqrt{1+\sinh ^{2}\left(\frac{x-b}{a}\right)} d x \\
& =\int_{x_{1}}^{x_{2}} \cosh \left(\frac{x-b}{a}\right) d x=a\left[\sinh \left(\frac{x_{2}-b}{a}\right)-\sinh \left(\frac{x_{1}-b}{a}\right)\right]=\ell
\end{aligned}
$$

plus boundary conditions.

As an example, let $x_{1}=-\frac{1}{2} d$ and $x_{2}=\frac{1}{2} d$, with $y_{1}=y_{2}=h$. Symmetry in $\pm x$ says $b=0$. Then the length constraint says

$$
\frac{\sinh (d / 2 a)}{(d / 2 a)}=\frac{\ell}{d}
$$

which, since $\sinh x>x$, has a solution for any $\ell \geq d$ and serves to determine a; and the value $y=h$ at $x= \pm d$ fixes c.

The figure (following page) shows results for chains of various lengths. The longest one falls below $y=0$.

Catenary Curves

