Catenary

The catenary curve (from the Latin for “chain”) is the shape assumed by a uniform chain of
fixed length supported at its ends under the influence of gravity. Let the curve be described
by a function y(z) with endpoints y(x1) = y1, y(x2) = ys. Let p be the (constant) mass per
unit length. The shape is then found by minimizing the gravitational potential energy,
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(A functional J[y(z)] is an operation that takes as its argument the function y(z) and yields
a number: energy, length, “action,” ....) Impose the constraint with a Lagrange multiplier
and extremize the action
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As in Section 6.5 in the text, varying y(x) leads to the Euler equation,
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The expression is simpler than it might have been because the derivative
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comes out nice (for exponents other than 2 inside the square root there are more terms),
and because y'* terms cancel between the df /Oy and Of /0y’ terms. Variation of X leads to
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Thus, after all this effort we are led to a deceptively simple-looking differential equation plus
an integral constraint,
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which we must solve for given boundary conditions.
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The solution makes use of properties of the hyperbolic functions

coshz = 5(e” +e ), sinhz = %(ex —e ),
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and in particular the properties

i cosh z = sinh x, i sinh x = cosh x, cosh?z = 1 + sinh? z.
dx dx
Thus, the function y = cosh x satisfies 3" = 1+/2, This is not yet the solution, because we
still have to account for boundary conditions and the constraint. First note that yy” = 1+y/2
remains true after a scaling, y = a cosh(z/a). This is good because x actually has units,
while the argument of cosh must be dimensionless; and also because it will allow us to satisfy
the length constraint. We can also translate the minimum anywhere we need by shifting x
to x —b. Finally, we must address the \/ug term, but that can be done by adding a constant
to y. So, with all of this we have the general shape of the curve
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This function satisfies the differential equation for any values of a, b, and ¢, as long as
A pg + ¢ = 0, which determines A. The value of the coefficients a, b, ¢ are determined by
the length constraint,

s:/:Q\/ledex:/:Q\/1+sinh2<x7_b>dx
= /:2 cosh<x&_b> dr =a [sinh(ng_ b) —sinh(xla_bﬂ =/

plus boundary conditions.

As an example, let 1 = —%d and z9 = %d, with y1 = y9 = h. Symmetry in £z says b = 0.
Then the length constraint says
sinh(d/2a) ¢

(d/2a) — d’
which, since sinhx > x, has a solution for any ¢ > d and serves to determine a; and the
value y = h at x = +d fixes c.

The figure (following page) shows results for chains of various lengths. The longest one falls
below y = 0.
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