
8 Hilbert space and matrix mechanics

8.1 Vector and linear function spaces

We alluded occasionally to analogy between vector spaces and abstract

space of functions on which an inner product is defined. Now let’s make

this explicit.

Historically, quantum mechanics was really formulated 1st by Heisenberg

in rather abstract way using obscure mathematical objects which (advisor)

M. Born told him were matrices. Schrödinger’s method developed 2nd,

but gained wider acceptance, had immediate implications for wave-particle

duality problem. Dirac showed two really same.

Analogy with ordinary linear algebra Denote Cartesian unit vectors by r̂i,

obey orthogonality relation

r̂i · r̂j = δij, (1)

can get ith component of a vector A by projecting,

Ai = r̂i ·A, (2)

such that

A =
∑

i
Air̂i =

∑

i
(r̂i ·A)r̂i. (3)

The scalar product of 2 vectors is a number,

A ·B =
∑

i
AiBi (4)

While components of A, namely Ax, Ay, Az depend on coordinate sys-

tem chosen (same vector in rotated coordinate system is A′
x, A

′
y, A

′
z), dis-

tances and scalar products are invariant under rotations, e.g.

A ·B = A′ ·B′ (5)
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Now think of wave function ψ describing quantum-mechanical state as

vector in large space. Let {ψn} be complete set of eigenstates of some

observable. Can always arrange that ψn are orthogonal. Assume discrete

e’values for now =⇒
(ψn, ψm) = δm,n (6)

(compare Eq. (1)). Completeness assumption is that any physically ac-

ceptable function φ can be expanded in terms of the ψn,

φ =
∑

n
cnψn, (7)

which looks like Eq. (3). Expansion coefficients cn thus completely specify

state φ, can be thought of as components of vector. Inner product with

χ =
∑

n dnψn is

(φ, χ) =
∑

n,m
c∗ndm(ψn, ψm) =

∑

n
c∗ndn (8)

also a number like Eq. (4).

Suppose we have a different basis set of complete eigenfctns. {ηn}. Then

the “components” of φ will look different in the new basis,

φ =
∑

n
c′nηn (9)

but inner products will be invariant,

(φ, χ) = (φ′, χ′) (10)

Continuous eigenvalues:

Suppose eigenfunctions ψq have continuous eigenvalue q, meaning no

gaps between allowed values of q. Example to keep in the back of your

mind: plane waves ψp = eipx for infinite system.

Then orthogonality condition is

(ψq, ψ
′
q) = δ(q − q′), (11)

can expand

2



φ =
∫

dq c(q)ψq ; χ =
∫

dq d(q)ψq (12)

c(q) = (φ, ψq) ; d(q) = (χ, ψq), (13)

and (φ, χ) =
∫

dq c(q)∗d(q) (14)

Although expressions involve integrals rather than discrete sums, formally

analagous to discrete case: can regard φ as vector w/ components given

by expansion coefficients.

8.2 Dirac’s Bra (〈ψ|) and Ket (|ψ〉) notation

• Physical system will now be described by vector in linear space (“Hilbert

space”), written as

|ψ〉, |φ〉, |n, `, m〉, . . . (15)

Might write particular eigenstate of H-atom as |n, `, m〉— letters sim-

ply label quantum state. Will also use

|r〉 for single particle located at (16)

position r (? not ψ(r)) (17)

|p〉 for particle with definite momentum p (18)

• Space is linear:

If |ψ〉, |φ〉 elements of space, with α, β constants, then

|χ〉 = α|ψ〉 + β|φ〉 (19)

is also an element of the space.
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• Dual space:

For every vector |ψ〉 we have an associated dual or adjoint vector 〈ψ|.
In ordinary matrix algebra |ψ〉 may be thought of as column vector,

〈ψ| as row vector!

• Inner product.

For every pair |ψ〉, 〈φ| we assign complex no. 〈φ|ψ〉 with following

properties:

1. 〈φ|ψ〉∗ = 〈ψ|φ〉
? Note this implies that the dual of α|ψ〉 is α∗〈ψ|.

2. 〈φ|φ〉 real, > 0 unless |φ〉 = 0.

3. linearity: 〈ψ|(α|φ〉) = α〈ψ|φ〉,
〈ψ| (α|φ〉 + β|χ〉) = α〈ψ|φ〉 + β〈ψ|χ〉.
N.B. Dual space is also linear

• Operators

Linear operators in this space defined by

Q̂|ψ〉 = |ψ′〉, (20)

a new vector in Hilbert space. Linearity means

Q̂ (α|ψ〉 + β|φ〉) = αQ̂|ψ〉 + βQ̂|φ〉 (21)

? All rules for addition and multiplication of operators hold as in

Schrödinger representation.

• Operators on dual space

This is a little tricky: action of operator Q̂ on dual vector 〈ψ| is

〈ψ|Q̂ = 〈ψ′|, (22)
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also a vector in the dual space. Meaning of 〈ψ′| is, for any |φ〉,
〈ψ′|φ〉 = 〈ψ| (Q̂|φ〉) ≡ 〈ψ|Q̂|φ〉 (23)

• Adjoint of operator

Def.:

Dual of Q̂|ψ〉 is 〈ψ|Q̂† (24)

Frequently I’ll be sloppy and write this as

( Q̂|ψ〉 )† = 〈ψ|Q̂† (25)

? All rules for adjoint we proved for S.-representation continue to hold,

e.g.

(AB)† = B†A† (26)

and

〈φ|Q̂|ψ〉∗ = 〈ψ|Q̂†|φ〉 (27)

• Eigenstates and eigenvalues

1. Eigenvalue eqn. for self-adjoint operator Q̂ is

Q̂|ψ〉 = q|ψ〉 (28)

2. E’values of self-adjoint op. are real:

〈φ|Q̂|φ〉 = q〈φ|φ〉
〈φ|Q̂†|φ〉 = q∗〈φ|φ〉

so q = q∗ if Q̂ = Q̂†.
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3. E’states belonging to different e’values are orthogonal:

Assume

Q̂|q1〉 = q1|q1〉
Q̂|q2〉 = q2|q2〉

Then notice Q̂ can act either to left or right:

〈q1|Q̂|q2〉 = q2〈q1|q2〉 (29)

= q1〈q1|q2〉 (30)

So if q1 6= q2, must have 〈q1|q2〉 = 0.

• Completeness:

Any Hilbert space vector |ψ〉 can be expanded

|ψ〉 =
∑

n
cn|n〉 (31)

in terms of some complete set |n〉 > of e’states of some self-adj. op-

erator Q̂, e’values qn assumed discrete for moment. The |n〉 > may

be chosen orthonormalized,

〈m|n〉 = δmn (32)

so expansion coeffs. cn may be expressed (multiply Eq. (31) by 〈m|!)
cn = 〈n|ψ〉 (33)

or

|ψ〉 =
∑

n
|n〉〈n|ψ〉 (34)

= (
∑

n
|n〉〈n| ) |ψ〉 (35)
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So we can think of expression
∑

n |n〉〈n| as being a kind of operator,

and from Eq. (35) we see it had better be the identity. This will be

true if the |n〉 span the whole space, i.e. completeness means
∑

n
|n〉〈n| = 1 (36)

continuous e’values:

Orthogonality : 〈q|q′〉 = δ(q − q′) ,

similar arguments give

|ψ〉 =
∫

dq |q〉〈q|ψ〉 (37)

=⇒
∫

dq |q〉〈q| = 1 (38)

• Analogy with matrices, row and column vectors:

Any state |ψ〉 specified completely by giving all the “components”

〈n|ψ〉 ( see Eq. (34) ).

Same is true for state Q̂|ψ〉:
〈n|Q̂|ψ〉 =

∑

m
〈n|Q̂|m〉〈m|ψ〉 (39)

Now note this looks like a matrix equation relating column vectors

〈n|ψ〉 and 〈n|Q̂|ψ〉 :



〈1|Q̂|ψ〉
〈2|Q̂|ψ〉
〈3|Q̂|ψ〉

...




=




Q11 Q12 Q13 · · ·
Q21 Q22 Q23 · · ·
Q31 · · ·

... ...







〈1|ψ〉
〈2|ψ〉
〈3|ψ〉

...




(40)

where the matrix elements of the operator Q̂ are just

Qmn = 〈m|Q̂|n〉 (41)
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Also since

〈ψ|Q̂|n〉 =
∑

m
〈ψ|m〉〈m|Q̂|n〉, (42)

can think of 〈ψ|n〉 and 〈ψ|Q̂|n〉 as row vectors:

(〈ψ|Q̂|1〉 〈ψ|Q̂|2〉 · · ·) = (〈ψ|1〉 〈ψ|2〉 · · ·)




Q11 Q12 · · ·
Q21 Q22 · · ·

...




(43)

Now we can make contact with the matrix algebra terminology, e.g.

adjoint of matrix A specified by elements Amn is mat. A† with ele-

ments A∗
nm. For our self-adjoint observables Q̂,

(Qmn)∗ = 〈m|Q̂|n〉∗
= 〈n|Q̂†|m〉
= 〈n|Q̂|m〉
= Qnm (44)

In linear algebra such a matrix called Hermitian.

Q = Q† ≡ (QT )∗ (45)

• Relation to our friend the wavefunction

|r〉 represents state with particle definitely at position r. Note this

provides continuous orthonormal basis:

〈r|r′〉 = δ(r− r′) (46)

In this basis state vector has “components”
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〈r|ψ〉 ≡ ψ(r) = Schrödinger’s wavefctn (47)

〈ψ|r〉 = ψ∗(r) (48)

so we can “expand” state |ψ〉 in this basis:

|ψ〉 =
∫

d3r|r〉〈r|ψ〉 =
∫

d3r|r〉ψ(r) (49)

Given 2nd state

|φ〉 =
∫

d3r|r〉φ(r) (50)

we can take the inner product:

〈ψ|φ〉 =
∫
d3rd3r′〈r′|r〉ψ∗(r′) =

∫
d3rψ∗(r)φ(r)

≡ (ψ, φ) (51)

to recover old notation explicitly!

• Time dependence

Objective: “derive” Schrödinger eqn” from scratch! Pretend you are

Heisenberg, and only know about state vectors in linear spaces. Given

system is in state |ψ(t1)〉, assume |ψ(t2)〉 related to it by linear oper-

ator Û :

|ψ(t2)〉 = Û(t2 − t1)|ψ(t1)〉 (52)

with Û unitary, Û Û † = 1. For infinitesimal δt = t2 − t1, can Taylor

expand:

Û = 1− iHδt/h̄, (53)

So far don’t know what H is really, merely plays role of 1st order

Taylor coefficient in time evolution of Û (did pull out factor of h̄ to
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make sure it has dimensions of energy, however!) Now plug (53) into

(52), rearrange:

|ψ(t1 + δt)〉 − |ψ(t1)〉
δt

=
−iH|ψ(t1)〉

h̄
, or

ih̄
∂|ψ〉
∂t

= H|ψ〉 (54)

which as we’ve said has formal solution

Û(t) = e−iHt/h̄ (55)

• Matrix mechanics → wave mechanics

sketch of Dirac’s ideas:

– Replace Poisson brackets in classical mechanics with commuta-

tors in quantum mechanics. Recall P.-bracket of two functions

f (qi, pi), g(qi, pi) of the coordinates qi and momenta pi in class.

mech. defined by

{f, g} ≡ ∑

i


∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi


 (56)

With this definition, Newton’s laws/ Hamilton’s equations may

be written generally as eqn. of motion for any fctn f (qi, pi) (See

any adv. class. mech. book):

d

dt
f = {f, H} (57)

e.g. take f = p, H = p2/2m + V (x), find

dp/dt = −∂V/∂x (58)
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– What is starting point for sensible quantization procedure? ’Til

now had guess for momentum operator based on free particle case,

similar ad hoc guesses. Dirac: take as gospel commutation rela-

tions between operators, e.g. p, r̂,

? replace {ri, pj} = δij → [r̂i, p̂j] = ih̄δij. (59)

– Calculate matr. elts in |r〉 basis of [r̂i, p̂j] = ih̄δij:

〈r| × [r̂i, p̂j] = ih̄δij × |r′〉
= (ri − r′i)〈r|p̂j|r′〉 = ih̄δijδ(r− r′) (60)

= ih̄(ri − r′i)
∂

∂rj
δ(r− r′)

(? last step a bit mysterious–exercise for reader!)

This says what p does to state |r〉, therefore to |ψ〉:
p = −ih̄∇ (61)

as we found before by vague arguments about the free particle

case, plane waves, etc. (see sec. 4).

– H = p̂2/2m + V (r) is time evolution operator in sense of (55).

How do we know this?

• Heisenberg representation

Choose orthonormal set of vectors |n〉 ≡ |n; 0〉 at time t = 0. If we

allow them to evolve according to Eq. (54), at a later time t they will

be |n; t〉, with

|n; t〉 = e−iHt/h̄|n; 0〉 (62)

They’ll still be a complete orthonormal set, though:
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〈n; t|m; t〉 = (〈n|eiHt/h̄)(e−iHt/h̄|m〉)
= 〈n|m〉 = δmn (63)

so we could expand an arbitrary state vector |ψ(t)〉 in terms of these

basis vectors with constant coefficients:

|ψ(t)〉 =
∑

n
cn|n; t〉 (64)

In Heisenberg rep., express everything in terms of t − independent

state functions |ψ〉 ≡ |ψ(0)〉 (characterized by |c1, c2 . . .〉.) Operators

on other hand become t− dependent , with matrix elements:

Qnm(t) ≡ 〈n; t|Q̂|n; t〉. (65)

Time derivative of matrix:

d

dt
Q̂ = (

∂

∂t
〈n; t|)Q̂|n; t〉 + 〈n; t|Q̂ ∂

∂t
|n; t〉

=
i

h̄
[H, Q̂] (66)

Eq. (66) sometimes called Heisenberg eqn. of motion. Completely

analogous to classical Poisson bracket equation, Eq. (57). Thus

without reference to specific form of “H”, canonical quan-

tization of Dirac tells us the mysterious time evolution

operator “H” in Eq. (54) is the Hamiltonian of the sys-

tem!

=⇒ equivalence of matrix and wave mechanics.
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