PHZ3113-Introduction to Theoretical Physics

Fall 2008
Problem Set 11
Oct. 15, 2008

Due: Friday, Oct. 17, 2008
Reading: Boas Ch. 3

1. The three Pauli matrices are

$$
\sigma_{1}=\left[\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right] \quad ; \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad ; \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Show they have the properties $\sigma_{i}^{2}=1$ for any i, and $\sigma_{i} \sigma_{j}=i \epsilon_{i j k} \sigma_{k}(i \neq j, k$ is summed, the i in front of the $\epsilon_{i j k}$ and in σ_{2} is $\sqrt{-1}$).
2. Find the inverse matrices, using the formula with the cofactor matrix, and identifying the cofactor matrix along the way:
(a)

$$
A=\left[\begin{array}{cc}
8 & -\frac{2}{3} \tag{2}\\
-4 & \frac{1}{2}
\end{array}\right]
$$

(b)

$$
B=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{3}\\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]
$$

3. (a) Find the adjoint A^{\dagger} and transpose A^{T} of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
1+i & 0 & 1-i \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find a (any) 2×2 matrix which is self-adjoint $A=A^{\dagger}$.
4.

$$
\vec{v}_{1}=\left[\begin{array}{lll}
3 & 0 & 4
\end{array}-1\right] ; \quad A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \tag{5}\\
-4 & 1 & 0 & 1 \\
3 & 0 & -3 & 1 \\
2 & 2 & 0 & 0
\end{array}\right] ; \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
2
\end{array}\right] .
$$

Calculate $A \vec{v}_{2}$ and $\vec{v}_{1} \cdot A \cdot \vec{v}_{2}$.
5. Solve the following system of equations using Cramer's rule:

$$
\begin{align*}
3 x+3 y+3 z & =0 \tag{6}\\
3 x-10 y+7 z & =13 \tag{7}\\
x+5 y+3 z & =-6 \tag{8}
\end{align*}
$$

