PHZ3113-Introduction to Theoretical Physics

Fall 2008

Problem Set 13

Oct. 29, 2008

Due: Friday, Nov. 7, 2008
Reading: Boas Ch. 2

1. A plane wave of light of angular frequency ω is represented by

$$
\begin{equation*}
e^{i \omega(t-n x / c)}, \tag{1}
\end{equation*}
$$

where t is time, x is distance, c is the speed of light, and n is the index of refraction. In a certain medium, it is found that n is a complex quantity, $n=n^{\prime}+i n^{\prime \prime}$, where n^{\prime} and $n^{\prime \prime}$ are real numbers. Find the real part of the expression above. What is the qualitative effect of $n^{\prime \prime}$ on the wave? What does $n^{\prime \prime}$ correspond to physically?
2. For the following pairs of numbers z_{1} and z_{2}, give their polar form; their complex conjugates, their moduli (magnitudes), product, and the quotient z_{1} / z_{2} :

$$
\begin{array}{ll}
z_{1}=\frac{1+i}{\sqrt{2}} ; \quad z_{2}=\sqrt{3}-i \\
z_{1}=\frac{3+4 i}{3-4 i} ; \quad z_{2}=\left[\frac{1+2 i}{1-3 i}\right]^{2} \tag{3}
\end{array}
$$

3. Show using de Moivre's formula that
(a) $\cos n \theta=\cos ^{n} \theta-\binom{n}{2} \cos ^{n-2} \theta \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \theta \sin ^{4} \theta \ldots$
(b) $\sin n \theta=\binom{n}{1} \cos ^{n-1} \theta \sin \theta-\binom{n}{3} \cos ^{n-3} \theta \sin ^{3} \theta+\binom{n}{5} \cos ^{n-5} \theta \sin ^{5} \theta \ldots$
where the $\binom{n}{m}$ are binomial coefficients.
4. (a) Write out the power series for $\sin z, \cos z, \sinh z, \cosh z$.
(b) Assume that these functions are defined by their power series. Show that

$$
\begin{align*}
& i \sin z=\sinh i z ; \quad \sin i z=i \sinh z \tag{4}\\
& \cos z=\cosh i z ; \quad \cos i z=\cosh z . \tag{5}
\end{align*}
$$

(c) Verify, using the power series, that $\cosh z=\left(e^{z}+e^{-z}\right) / 2$, i.e. that the usual relationship holds in the complex plane.

Figure 1: RLC circuit.
5. (a) Find the total effective impedance of the combination shown, to be placed in a circuit at the two end wires.
(b) Find ω at resonance (at resonance, $\operatorname{Im} Z=0$).

