PHZ3113-Introduction to Theoretical Physics

Fall 2008
Problem Set 14
Nov. 7, 2008

Due: Friday, Nov. 14, 2008
Reading: Boas Ch. 14

1. (1 pt.) Show whether the function $f(z)=\operatorname{Re} z$ is analytic or not.
2. (1 pt.) Find the analytic function $w(x, y)=u(x, y)+i v(x, y)$ if $u(x, y)=$ $x^{3}-3 x y^{2}$.
3. (1 pt.) Suppose $f(z)$ is analytic. Show that the derivative of $f(z)$ with respect to z^{*} does not exist unless $f(z)=$ const.
4. (2 pts.) Let $w=w(x, y)$, and $A=\partial^{2} w / \partial x^{2}, B=\partial^{2} w / \partial x \partial y$, and $C=\partial^{2} w / \partial y^{2}$. From the calculus of functions of 2 variables, we have a saddle point if

$$
\begin{equation*}
B^{2}-A C>0 \tag{1}
\end{equation*}
$$

With $f(z) \equiv u(x, y)+i v(x, y)$, apply Cauchy-Riemann conditions and show that neither $u(x, y)$ nor $v(x, y)$ has a maximum or minimum in any finite region of the complex plane.

