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. Forn >0,

fc(z —29)"dz =0 (1)

because (z — zg)" is analytic everywhere. For n < 0, we can use the Cauchy
integral and its derivatives:
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rewrite for f(z) =1, set k +1 = —n, then we have the integral we want. Then
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since derivative of 1, a const., with respect to 2y is 0, and if n = —1, then
dz
= 2mi = 2mi 4
]{z—zo mif(20) ) (4)
From previous problem, with zg = 0, follows immediately. Only get nonzero
answer if m —n — 1 = —1, i.e. if m = n, when result is g—:i =1
. Write
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since f(z) = 1.

SO

Using € =1+ 2z + 22/2! + ..., we have
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22+a?  (z+ia)(z —ia) (8)
Simple poles at zy = +ia =
1 1
R(+ia) = =+— 9
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2nd order poles at zy = +ia.
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R(tia) = ———— = -2 =+— (11
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sinl/z sin £ 12)
22+a?  (z+ia)(z —ia)
Simple poles at zy = +ia and essential singularity at z = 0. =
. sinl/ai sinh(1/a)
R(+ia) = = — 13
(i) = =5 2a (13)
For essential singularity expand
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converges everywhere except at z = 0. The coefficient of 1/z is 1. The
by term in Laurent series will come from identifying the 1/z term in this

series multiplied by 1= ~ -5(1 — 2 +...), meaning that the residue is
1/a®.
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22+a?  (z+ia)(z —ia) (15)

simple poles zg = +ia = R(+ia) = €7



