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2. • Terms are monotonically decreasing and positive. Integral test:
∫∞
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n2
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2/ ln3 2, i.e. convergent.

• We know
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n2 converges, and | sin n| < 1. Therefore by comparison

test,
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sin n
n2 also converges.

• Integral test.
∫∞
2 1/ ln2 n dn = ∞, hence series also is divergent.

• If you factor out an overall minus sign, terms are positive and monotoni-
cally decreasing again, so integral test gives
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so it converges.

3. (a) 6+ x−36
12
− (x−36)2

1728
+ (x−36)3

124416
+O ((x− 36)4). Taylor series 3rd order at x = 36.1

gives 6.00833 to accuracy of my calculator, very good because exact result is
6.00833.
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Taylor series 3rd

order at x = Pi/4 + 0.1 gives 1.22267, exact is 1.22305.
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where x = ε0/kT . Now
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n e−nx is just a geometric series,

∑
n

e−nx = 1 + e−x + (e−x)2 + . . . =
1

1− e−x
, so

∂

∂x

1

1− e−x
=

e−x

(1− e−x)2
, (7)

so

〈ε〉 = ε0
e−x

1− e−x
= ε0

1

ex − 1
= ε0

1

eε0/kT − 1
, (8)

(The function 1
eε0/kT−1

is the Bose-Einstein distribution function, the probability

of occupation of a state with energy ε0 by particles with Bose statistics.)

(b) kT À ε0 ⇒ x ¿ 1
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5. The example we discussed in class, the vanishing of the electric and gravitational
fields inside hollow uniform spheres of charge and mass, respectively, were spe-
cial cases where only one sign of the mass (of course) or charge was relevant.
The result that the electric field in a hollow conductor, or “Faraday cage”, is
zero, depends obviously on the redistribution of charges (both + and -) to cancel
the electric field inside the conductor. There is no such redistribution of masses
(no “screening” of gravity fields) possible because we only have + mass.
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