PHZ3113–Introduction to Theoretical Physics Fall 2008 Problem Set 2

Wednesday, Sept. 3, 2008

Due: Wednesday, Sept. 10, 2008 Reading: Boas chapt. 4

- 1. Show using L'Hospital's rule that
 - (a) $x^n e^{-x} \to 0$ as $x \to \infty$ for any n,
 - (b) $\ln x/x^p \to 0$ as $x \to \infty$ for any p > 0,

i.e. an exponential "wins" over any power, and any power "wins" over a log.

- 2. Given $\int_0^\infty e^{-ax} \sin kx \, dx = \frac{k}{a^2+k^2}$, evaluate (using differentiation with respect to a parameter)
 - (a) $\int_0^\infty x e^{-ax} \sin kx dx$

(b)
$$\int_0^\infty x e^{-ax} \cos kx dx$$

- 3. Calculate the total derivative dr/ds if $r = e^{-p^2 q^2}$, $p = e^s$, and $q = e^{-s}$.
- 4. For $u = e^y \sin x$, check that

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x},\tag{1}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{2}$$

5. Calculate the total derivative dy/dx for

(a)
$$xy^2 - 3x^2 = xy + 5$$
; (b) $x = \frac{3y - 4}{y + 2}$ (3)

using both implicit differentiation (Boas sec. 4-6) and explicitly solving for y = y(x).