PHZ3113-Introduction to Theoretical Physics

Fall 2008
Problem Set 2
Wednesday, Sept. 3, 2008

Due: Wednesday, Sept. 10, 2008
Reading: Boas chapt. 4

1. Show using L'Hospital's rule that
(a) $x^{n} e^{-x} \rightarrow 0$ as $x \rightarrow \infty$ for any n,
(b) $\ln x / x^{p} \rightarrow 0$ as $x \rightarrow \infty$ for any $p>0$,
i.e. an exponential "wins" over any power, and any power "wins" over a log.
2. Given $\int_{0}^{\infty} e^{-a x} \sin k x d x=\frac{k}{a^{2}+k^{2}}$, evaluate (using differentiation with respect to a parameter)
(a) $\int_{0}^{\infty} x e^{-a x} \sin k x d x$
(b) $\int_{0}^{\infty} x e^{-a x} \cos k x d x$
3. Calculate the total derivative $d r / d s$ if $r=e^{-p^{2}-q^{2}}, p=e^{s}$, and $q=e^{-s}$.
4. For $u=e^{y} \sin x$, check that

$$
\begin{align*}
\frac{\partial^{2} u}{\partial x \partial y} & =\frac{\partial^{2} u}{\partial y \partial x} \tag{1}\\
\frac{\partial^{2} u}{\partial x^{2}} & +\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{2}
\end{align*}
$$

5. Calculate the total derivative $d y / d x$ for

$$
\begin{equation*}
\text { (a) } x y^{2}-3 x^{2}=x y+5 ; \quad \text { (b) } x=\frac{3 y-4}{y+2} \tag{3}
\end{equation*}
$$

using both implicit differentiation (Boas sec. 4-6) and explicitly solving for $y=y(x)$.

