PHZ3113-Introduction to Theoretical Physics

Fall 2008
Problem Set 3
Sept. 11, 2008

Due: Friday. Sept. 12, 2008
Reading: Boas chapt. 4

1. If $u=f(x-c t)+g(x+c t)$, show that

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} \tag{1}
\end{equation*}
$$

What can you say about the possible physical interpretation of u ?
2. Given $s(v, T)$ and $v(p, T)$, define $c_{p} \equiv T(\partial S / \partial T)_{p}, c_{v} \equiv T(d s / d T)_{v}$. Show that

$$
\begin{equation*}
c_{p}-c_{v}=T\left(\frac{\partial s}{\partial v}\right)_{T}\left(\frac{\partial v}{\partial T}\right)_{p} \tag{2}
\end{equation*}
$$

[Hint: you need $s(p, T)$ to calculate c_{p}, i.e. find $d S=(\ldots) d p+(\ldots) d T$.]
3. Find the point on the curve $x^{2}-2 \sqrt{3} x y-y^{2}=2$ which is closest to the origin 0,0 .
4. The temperature of a rectangle bounded by the lines $x= \pm 1, y= \pm 2$ is given by $T=x^{2}-4 y^{2}+y-5$. Find the hottest and coldest point.
5. Transform the differential equation

$$
\begin{equation*}
x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+2 x\left(\frac{d y}{d x}\right)-5 y=0 \tag{3}
\end{equation*}
$$

with the help of the substitution $x=e^{z}$ into another differential equation in $d^{2} y / d z^{2}, d y / d z$ and y which has only constant coefficients of the derivative terms.

