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1. Applying the chain rule twice,

∂2u

∂x2
= f ′′(x− ct) + g′′(x + ct) = u′′ (1)

∂2u

∂t2
= c2(f ′′(x− ct) + g′′(x + ct)) = c2u′′, (2)

so the equation given follows. As discussed in class, the general form is the
superposition (addition) of a “pulse” of general form f travelling to the right
and g travelling to the left, and the equation itself is the so-called wave equation
in 1D, describing, e.g. waves on a string.

2. Total differential of s(v, T ) is

ds =
∂s

∂v

∣∣∣∣
T

dv +
∂s

∂T

∣∣∣∣
V

dT (3)

=
∂s

∂v

∣∣∣∣
T

dv +
cv

T
dT. (4)

We need to find a way to include derivatives wrt p. We are given v = v(p, T )
so let’s use that. Express the differential of v

dv =
∂v

∂p

∣∣∣∣
T

dp +
∂v

∂T

∣∣∣∣
p

dT (5)

and combine with the Eq. (4) to get

ds =
∂s

∂v

∣∣∣∣
T

(
∂v

∂p

∣∣∣∣
T

dp +
∂v

∂T

∣∣∣∣
p

dT

)
+

cv

T
dT (6)

=
∂s

∂v

∣∣∣∣
T

∂v

∂p

∣∣∣∣
T

dp +

(
∂s

∂v

∣∣∣∣
T

∂v

∂T

∣∣∣∣
p

+
cv

T

)
dT. (7)

Now compare this with the expression for the exact differential of s(p, T ):

ds =
∂s

∂p

∣∣∣∣
T

dp +
∂s

∂T

∣∣∣∣
p

dT (8)

≡ ∂s

∂p

∣∣∣∣
T

dp +
cp

T
dT (9)

and now equate the coefficients of the independent differential dT in both (7)
and (9) to get the final result

cp − cv = T

(
∂s

∂v

)

T

(
∂v

∂T

)

p

. (10)
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3. We’re looking for the point (x, y) where the distance from the origin
√

x2 + y2

is minimal subject to the constraint x2 − 2
√

3xy − y2 = 2. Note that if x2 + y2

is a minimum
√

x2 + y2 will be too. You can do this problem with the method
of Lagrange multipliers described in Boas ch. 4, or by substituting the solution
for y in terms of x,

y = −
√

3x−±
√

2
√

2x2 − 1 (11)

into x2 + y2. One then needs to minimize x2 + y(x)2, or find the x such that

2x + 2

(
± 2

√
2x√

2x2 − 1
−
√

3

)(
−
√

3x±
√

2
√

2x2 − 1
)

= 0 (12)

This can be simplified and solved for x, then the value for x substituted back
to find y. The two solutions are (x, y) = (∓√3/2,±1/2).

4. Here’s a plot of the rectangle We want the temperature to be an extremum both
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Figure 1: Temperature in rectangle. Note dark blue is cold and violet is hot.

along x and along y, i.e. the gradient ∇T = 0 at these points.

∇T = (2x, 1− 8y) = 0. (13)

Now remember in 2D the stationary point (0, 1/8) which solves these equations
need not be an absolute min or max. To check we need the second derivatives

∂2T

∂x2
= 2 ;

∂2T

∂x∂y
= 0 ;

∂2T

∂y2
= −8, (14)

so the signs of the curvature in x and y directions are different, indicating a
saddle point. In the picture you can see this saddle point pretty clearly if you
view it in color.

Now if there is no absolute min/max in the interior of the rectangle, it must
take place on the boundaries. On x = −1, T (−1, y) = −4 + y − 4y2, and
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the extrema are at dT (−1, y)/dy = 0 or y = 1/8 which has second derivative
d2T (−1, y)/dy2|y=1/8 = −8, indicating a max. The “temperature” at this point
is T (−1, 1/8) = −63/16. There’s another equivalent maximum at (1, 1/8).

Now look on top and bottom. T (x,−2) = −23 + x2 so dT (x, 2)/dx = 0 gives
2x = 0 and d2T (x, 2)/dx2|x=0 = 2, so a min wrt x. At (0,−2) the temperature
is T = −23. A similar analysis shows that there’s a min on the top too, but the
one on the bottom is lower.

5. Want to use the substitution x = ez and transform the differential equation

x2

(
d2y

dx2

)
+ 2x

(
dy

dx

)
− 5y = 0 (15)

The chain rule gives

dy(x(z))

dz
=

dy

dx

dx

dz
= ez dy

dx
= x

dy

dx
(16)

d2y

dz2
= x

d

dx

(
x

dy

dx

)
= x2 d2y

dx2
+ x

dy

dx
(17)

so you can see that by adding the two you get on the right hand side the first
two terms of the original differential equation, which can thus be expressed as

d2y

dz2
+

dy

dz
− 5y = 0 (18)
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