PHZ3113-Introduction to Theoretical Physics

Fall 2008

Problem Set 3 Solutions

Sept 18, 2008

1. Applying the chain rule twice,

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial x^{2}}=f^{\prime \prime}(x-c t)+g^{\prime \prime}(x+c t)=u^{\prime \prime} \tag{1}\\
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(f^{\prime \prime}(x-c t)+g^{\prime \prime}(x+c t)\right)=c^{2} u^{\prime \prime} \tag{2}
\end{align*}
$$

so the equation given follows. As discussed in class, the general form is the superposition (addition) of a "pulse" of general form f travelling to the right and g travelling to the left, and the equation itself is the so-called wave equation in 1D, describing, e.g. waves on a string.
2. Total differential of $s(v, T)$ is

$$
\begin{align*}
d s & =\left.\frac{\partial s}{\partial v}\right|_{T} d v+\left.\frac{\partial s}{\partial T}\right|_{V} d T \tag{3}\\
& =\left.\frac{\partial s}{\partial v}\right|_{T} d v+\frac{c_{v}}{T} d T \tag{4}
\end{align*}
$$

We need to find a way to include derivatives wrt p. We are given $v=v(p, T)$ so let's use that. Express the differential of v

$$
\begin{equation*}
d v=\left.\frac{\partial v}{\partial p}\right|_{T} d p+\left.\frac{\partial v}{\partial T}\right|_{p} d T \tag{5}
\end{equation*}
$$

and combine with the Eq. (4) to get

$$
\begin{align*}
d s & =\left.\frac{\partial s}{\partial v}\right|_{T}\left(\left.\frac{\partial v}{\partial p}\right|_{T} d p+\left.\frac{\partial v}{\partial T}\right|_{p} d T\right)+\frac{c_{v}}{T} d T \tag{6}\\
& =\left.\left.\frac{\partial s}{\partial v}\right|_{T} \frac{\partial v}{\partial p}\right|_{T} d p+\left(\left.\left.\frac{\partial s}{\partial v}\right|_{T} \frac{\partial v}{\partial T}\right|_{p}+\frac{c_{v}}{T}\right) d T \tag{7}
\end{align*}
$$

Now compare this with the expression for the exact differential of $s(p, T)$:

$$
\begin{align*}
d s & =\left.\frac{\partial s}{\partial p}\right|_{T} d p+\left.\frac{\partial s}{\partial T}\right|_{p} d T \tag{8}\\
& \left.\equiv \frac{\partial s}{\partial p}\right|_{T} d p+\frac{c_{p}}{T} d T \tag{9}
\end{align*}
$$

and now equate the coefficients of the independent differential $d T$ in both (7) and (9) to get the final result

$$
\begin{equation*}
c_{p}-c_{v}=T\left(\frac{\partial s}{\partial v}\right)_{T}\left(\frac{\partial v}{\partial T}\right)_{p} . \tag{10}
\end{equation*}
$$

3. We're looking for the point (x, y) where the distance from the origin $\sqrt{x^{2}+y^{2}}$ is minimal subject to the constraint $x^{2}-2 \sqrt{3} x y-y^{2}=2$. Note that if $x^{2}+y^{2}$ is a minimum $\sqrt{x^{2}+y^{2}}$ will be too. You can do this problem with the method of Lagrange multipliers described in Boas ch. 4, or by substituting the solution for y in terms of x,

$$
\begin{equation*}
y=-\sqrt{3} x- \pm \sqrt{2} \sqrt{2 x^{2}-1} \tag{11}
\end{equation*}
$$

into $x^{2}+y^{2}$. One then needs to minimize $x^{2}+y(x)^{2}$, or find the x such that

$$
\begin{equation*}
2 x+2\left(\pm \frac{2 \sqrt{2} x}{\sqrt{2 x^{2}-1}}-\sqrt{3}\right)\left(-\sqrt{3} x \pm \sqrt{2} \sqrt{2 x^{2}-1}\right)=0 \tag{12}
\end{equation*}
$$

This can be simplified and solved for x, then the value for x substituted back to find y. The two solutions are $(x, y)=(\mp \sqrt{3} / 2, \pm 1 / 2)$.
4. Here's a plot of the rectangle We want the temperature to be an extremum both

Figure 1: Temperature in rectangle. Note dark blue is cold and violet is hot.
along x and along y, i.e. the gradient $\nabla T=0$ at these points.

$$
\begin{equation*}
\nabla T=(2 x, 1-8 y)=0 . \tag{13}
\end{equation*}
$$

Now remember in 2D the stationary point $(0,1 / 8)$ which solves these equations need not be an absolute min or max. To check we need the second derivatives

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}=2 ; \quad \frac{\partial^{2} T}{\partial x \partial y}=0 ; \quad \frac{\partial^{2} T}{\partial y^{2}}=-8 \tag{14}
\end{equation*}
$$

so the signs of the curvature in x and y directions are different, indicating a saddle point. In the picture you can see this saddle point pretty clearly if you view it in color.

Now if there is no absolute min/max in the interior of the rectangle, it must take place on the boundaries. On $x=-1, T(-1, y)=-4+y-4 y^{2}$, and
the extrema are at $d T(-1, y) / d y=0$ or $y=1 / 8$ which has second derivative $d^{2} T(-1, y) /\left.d y^{2}\right|_{y=1 / 8}=-8$, indicating a max. The "temperature" at this point is $T(-1,1 / 8)=-63 / 16$. There's another equivalent maximum at $(1,1 / 8)$.

Now look on top and bottom. $T(x,-2)=-23+x^{2}$ so $d T(x, 2) / d x=0$ gives $2 x=0$ and $d^{2} T(x, 2) /\left.d x^{2}\right|_{x=0}=2$, so a min wrt x. At $(0,-2)$ the temperature is $T=-23$. A similar analysis shows that there's a min on the top too, but the one on the bottom is lower.
5. Want to use the substitution $x=e^{z}$ and transform the differential equation

$$
\begin{equation*}
x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+2 x\left(\frac{d y}{d x}\right)-5 y=0 \tag{15}
\end{equation*}
$$

The chain rule gives

$$
\begin{align*}
\frac{d y(x(z))}{d z} & =\frac{d y}{d x} \frac{d x}{d z}=e^{z} \frac{d y}{d x}=x \frac{d y}{d x} \tag{16}\\
\frac{d^{2} y}{d z^{2}} & =x \frac{d}{d x}\left(x \frac{d y}{d x}\right)=x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x} \tag{17}
\end{align*}
$$

so you can see that by adding the two you get on the right hand side the first two terms of the original differential equation, which can thus be expressed as

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+\frac{d y}{d z}-5 y=0 \tag{18}
\end{equation*}
$$

