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1. Consider F = F (r, θ). Then the differential is

dF =
∂F

∂r
dr +

∂F

∂θ
dθ, (1)

but we may consider r and θ to be functions of x and y. Therefore their
differentials are

dr =
∂r

∂x
dx +

∂r

∂y
dy (2)

dθ =
∂θ

∂x
dx +

∂θ

∂y
dy. (3)

Substituting, we find
(

∂F

∂r

∂r

∂x
+

∂F

∂θ

∂θ

∂x

)
dx +

(
∂F

∂r

∂r

∂y
+

∂F

∂θ

∂θ

∂y

)
dy. (4)

If we now wish to take a derivative of F wrt x holding y constant, we can
calculate it by simply setting dy = 0 in the differential, obtaining

∂F

∂x

∣∣∣∣
y

=
∂F

∂r

∂r

∂x
+

∂F

∂θ

∂θ

∂x
, (5)

just the result expected from the chain rule. The other derivatives requested
follow from a similar analysis.

2. We’re given du = Tds− pdv.

(a) (T, v). Note that

d(u− Ts) = Tds− pdv − Tds− sdT = −pdv − sdT, (6)

so f = u− Ts is a function whose differential depends only on dv and dT .

(b) (s, p). Consider

d(u + pv) = Tds− pdv + pdv + vdp = Tds− vdp, (7)

so h = u + pv has a differential which depends only on ds and dp.

(c) (p, T ). Finally, consider (using results of (b))

d(h− Ts) = Tds− vdp− Tds− sdT = −vdp− sdT, (8)

so g = h−Ts = u+pv−Ts has a differential which depends only on dp and
dT . Note in thermodynamics the functionals f, h, and g are referred to as
the Helmholtz free energy, the enthalpy, and the Gibbs free energy. They
represent quantities which are extremal when a thermodynamic system is
in equilibrium under conditions when one of the relevant thermodynamic
variables is held constant.
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3. Start with du = Tds − pdv. Think of u as a function of s and v. Since this is
an exact differential, we know that

T =
∂u

∂s

∣∣∣∣
V

; − p =
∂u

∂V

∣∣∣∣
s

. (9)

We can take a v derivative of the first and an s derivative of the second to
obtain ∂2s

∂v∂s
and ∂2s

∂s∂v
. But the equality of mixed partial derivatives implies that

∂T

∂V

∣∣∣∣
s

= − ∂p

∂s

∣∣∣∣
V

, (10)

one of the Maxwell relations.

4. Proceeding similarly to Prob.3,

(a)

dh = Tds + vdp ⇒ ∂T

∂p

∣∣∣∣
s

=
∂V

∂s

∣∣∣∣
p

(11)

(b)

df = −pdv − sdT ⇒ ∂p

∂T

∣∣∣∣
v

=
∂s

∂v

∣∣∣∣
T

(12)

(c)

dg = vdp− sdT ⇒ ∂V

∂T

∣∣∣∣
p

= − ∂s

∂p

∣∣∣∣
T

, (13)

we get the remaining Maxwell relations.

5. (a) σ is a surface charge density, or charge/area. Since xyz is a volume, the
constant a must have dimensions of charge/L5.

(b) Let’s use method of Lagrange multipliers (Boas p. 214 et seq.). Prescription
is to define a new function which is the function to be minimized plus a multiplier
λ times the constraint. So

F [x, y, z, λ] = axyz + λ(x2 + y2 + z2 − b2). (14)

Let’s now set all partial derivatives of F equal to zero:

∂F

∂x
= ayz + 2λx = 0 ;

∂F

∂y
= axz + 2λy = 0 ;

∂F

∂x
= axy + 2λz = 0 ;

∂F

∂λ
= x2 + y2 + z2 − b2 = 0. (15)

Multiplying the first three equations by x, y and z respectively, and adding, we
get

3axyz + 2λ(x2 + y2 + z2) = 0 ⇒ axyz = −2

3
b2λ. (16)
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Multiplying 1st equation in (15) by x and substituting for xyz, we arrive at
x2 = λ/3. Since the problem is symmetric in x, y and z, we can immediately
say x2 = y2 = z2 = λ/3. But this means that x2 + y2 + z2 = λ = b2, so we have
determined the Lagrange multiplier, and can say that the extremum occurs at
x2, y2, z2 = (b2/3)(1, 1, 1).

Now we need to say whether these values are maxima or minima. Let’s assume
a > 0 without loss of generality. Since σ = axyz, two extremal values are obvi-
ously ±b3a/33/2. So without taking second derivatives, we can say that the max-
ima, where σ = b3a/33/2, occur at

√
3(x, y, z)/b = (1,−1,−1), (−1, 1,−1), (1, 1, 1)

and (−1,−1, 1).
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