PHZ3113-Introduction to Theoretical Physics

Fall 2008
Problem Set 4 Solutions
Sept 22, 2008

1. Consider $F=F(r, \theta)$. Then the differential is

$$
\begin{equation*}
d F=\frac{\partial F}{\partial r} d r+\frac{\partial F}{\partial \theta} d \theta \tag{1}
\end{equation*}
$$

but we may consider r and θ to be functions of x and y. Therefore their differentials are

$$
\begin{align*}
d r & =\frac{\partial r}{\partial x} d x+\frac{\partial r}{\partial y} d y \tag{2}\\
d \theta & =\frac{\partial \theta}{\partial x} d x+\frac{\partial \theta}{\partial y} d y \tag{3}
\end{align*}
$$

Substituting, we find

$$
\begin{equation*}
\left(\frac{\partial F}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial x}\right) d x+\left(\frac{\partial F}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial y}\right) d y \tag{4}
\end{equation*}
$$

If we now wish to take a derivative of F wrt x holding y constant, we can calculate it by simply setting $d y=0$ in the differential, obtaining

$$
\begin{equation*}
\left.\frac{\partial F}{\partial x}\right|_{y}=\frac{\partial F}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial x} \tag{5}
\end{equation*}
$$

just the result expected from the chain rule. The other derivatives requested follow from a similar analysis.
2. We're given $d u=T d s-p d v$.
(a) (T, v). Note that

$$
\begin{equation*}
d(u-T s)=T d s-p d v-T d s-s d T=-p d v-s d T, \tag{6}
\end{equation*}
$$

so $f=u-T s$ is a function whose differential depends only on $d v$ and $d T$.
(b) (s, p). Consider

$$
\begin{equation*}
d(u+p v)=T d s-p d v+p d v+v d p=T d s-v d p, \tag{7}
\end{equation*}
$$

so $h=u+p v$ has a differential which depends only on $d s$ and $d p$.
(c) (p, T). Finally, consider (using results of (b))

$$
\begin{equation*}
d(h-T s)=T d s-v d p-T d s-s d T=-v d p-s d T, \tag{8}
\end{equation*}
$$

so $g=h-T s=u+p v-T s$ has a differential which depends only on $d p$ and $d T$. Note in thermodynamics the functionals f, h, and g are referred to as the Helmholtz free energy, the enthalpy, and the Gibbs free energy. They represent quantities which are extremal when a thermodynamic system is in equilibrium under conditions when one of the relevant thermodynamic variables is held constant.
3. Start with $d u=T d s-p d v$. Think of u as a function of s and v. Since this is an exact differential, we know that

$$
\begin{equation*}
T=\left.\frac{\partial u}{\partial s}\right|_{V} \quad ; \quad-p=\left.\frac{\partial u}{\partial V}\right|_{s} \tag{9}
\end{equation*}
$$

We can take a v derivative of the first and an s derivative of the second to obtain $\frac{\partial^{2} s}{\partial v \partial s}$ and $\frac{\partial^{2} s}{\partial s \partial v}$. But the equality of mixed partial derivatives implies that

$$
\begin{equation*}
\left.\frac{\partial T}{\partial V}\right|_{s}=-\left.\frac{\partial p}{\partial s}\right|_{V}, \tag{10}
\end{equation*}
$$

one of the Maxwell relations.
4. Proceeding similarly to Prob.3,
(a)

$$
\begin{equation*}
d h=T d s+\left.v d p \Rightarrow \frac{\partial T}{\partial p}\right|_{s}=\left.\frac{\partial V}{\partial s}\right|_{p} \tag{11}
\end{equation*}
$$

(b)

$$
\begin{equation*}
d f=-p d v-\left.s d T \Rightarrow \frac{\partial p}{\partial T}\right|_{v}=\left.\frac{\partial s}{\partial v}\right|_{T} \tag{12}
\end{equation*}
$$

(c)

$$
\begin{equation*}
d g=v d p-\left.s d T \Rightarrow \frac{\partial V}{\partial T}\right|_{p}=-\left.\frac{\partial s}{\partial p}\right|_{T} \tag{13}
\end{equation*}
$$

we get the remaining Maxwell relations.
5. (a) σ is a surface charge density, or charge/area. Since $x y z$ is a volume, the constant a must have dimensions of charge $/ L^{5}$.
(b) Let's use method of Lagrange multipliers (Boas p. 214 et seq.). Prescription is to define a new function which is the function to be minimized plus a multiplier λ times the constraint. So

$$
\begin{equation*}
F[x, y, z, \lambda]=a x y z+\lambda\left(x^{2}+y^{2}+z^{2}-b^{2}\right) \tag{14}
\end{equation*}
$$

Let's now set all partial derivatives of F equal to zero:

$$
\begin{gather*}
\frac{\partial F}{\partial x}=a y z+2 \lambda x=0 \quad ; \quad \frac{\partial F}{\partial y}=a x z+2 \lambda y=0 \quad ; \quad \frac{\partial F}{\partial x}=a x y+2 \lambda z=0 \\
\frac{\partial F}{\partial \lambda}=x^{2}+y^{2}+z^{2}-b^{2}=0 . \tag{15}
\end{gather*}
$$

Multiplying the first three equations by x, y and z respectively, and adding, we get

$$
\begin{equation*}
3 a x y z+2 \lambda\left(x^{2}+y^{2}+z^{2}\right)=0 \Rightarrow a x y z=-\frac{2}{3} b^{2} \lambda \tag{16}
\end{equation*}
$$

Multiplying 1st equation in (15) by x and substituting for $x y z$, we arrive at $x^{2}=\lambda / 3$. Since the problem is symmetric in x, y and z, we can immediately say $x^{2}=y^{2}=z^{2}=\lambda / 3$. But this means that $x^{2}+y^{2}+z^{2}=\lambda=b^{2}$, so we have determined the Lagrange multiplier, and can say that the extremum occurs at $x^{2}, y^{2}, z^{2}=\left(b^{2} / 3\right)(1,1,1)$.

Now we need to say whether these values are maxima or minima. Let's assume $a>0$ without loss of generality. Since $\sigma=a x y z$, two extremal values are obviously $\pm b^{3} a / 3^{3 / 2}$. So without taking second derivatives, we can say that the maxima, where $\sigma=b^{3} a / 3^{3 / 2}$, occur at $\sqrt{3}(x, y, z) / b=(1,-1,-1),(-1,1,-1),(1,1,1)$ and ($-1,-1,1$).

