PHZ3113-Introduction to Theoretical Physics
 Fall 2008
 Problem Set 5
 September 17, 2008

Due: Friday, Sept. 19, 2008
Reading: Boas chapt. 4

1. Find

$$
\begin{equation*}
\frac{d}{d x} \int_{1}^{1 / x} \frac{e^{x t}}{t} d t \tag{1}
\end{equation*}
$$

2. The equation of state for a van der Waals gas is

$$
\begin{equation*}
\left(p+\frac{a}{v^{2}}\right)(v-b)=C . \tag{2}
\end{equation*}
$$

Calculate $d v / d p$ by the method of total differentials.
3. Expand
(a) $f(x, y)=x y^{2}+2 x^{2}+1$ around (1,2).
(b) $g(x, y)=\frac{y^{2}}{x^{3}}$ around (1,0).
4. Minimize the function $f=x^{2}+y^{2}$ subject to the constraint $y=1-x^{2}$.
5. Problem 5 (Shankar) on next page

Problem 3.1.7. A Statistical Mechanics Interiude. This example shows how Lagrange multipliers appear in Statistical Mechanics. Consider N particles in a box. According to quantum mechanics, the energies of the particles are quantized to some set of values or energy levels, $\varepsilon_{1}, \varepsilon_{2}, \ldots$. Let n_{i} be the number of particles in level i with energy ε_{i}. The multiplicity or number of distinct rearrangements of the particles consistent with any given distribution n_{i}, is given by

$$
\begin{equation*}
W\left(n_{1}, n_{2}, \ldots\right)=\frac{N!}{n_{1}!n_{2}!\ldots \ldots} \tag{3.1.61}
\end{equation*}
$$

For example if all the particles are in the lowest energy level, we have $n_{1}=N$, rest of the $n_{i}=0$ and $W=1$. (Recall that $01=1$.) If one particle is in the second level and the rest are still in the lowest. $W=N!/(N-1)!=N$, the multiplicity reflecting the N ways to choose the one who goes up. The question is this: which distribution of particles, subject to the constraint that the total number equal N and the total energy equal E, gives the biggest W? Proceed to find this as follows:
a) - Work with $S=\ln W$. Argue that

$$
\ln n!\simeq \pi \ln n-\pi
$$

for large n by approximating the sum involved in $\ln n!$ by an integral.
b) - Write the constraints on the n_{i} 's due to total number N and energy E.
c) Treat all n_{i} as continuous variables, introduce Lagrange multipliers α and β for N and E and maximize S.
d) Derive the Boltzmann distribution $n_{i}=e^{-\alpha-\beta \varepsilon_{i}}$.

The multipliers may then be found by setting the total number and energy coming from this distribution to N and E, respectively. But this is not our problem here.

