PHZ3113-Introduction to Theoretical Physics

Fall 2008
Problem Set 6
September 19, 2008

Due: Wednesday, Sept. 24, 2008
Reading: Boas chapt. 5, secs. 2-4; chapt. 3 sec. 4.

1. Evaluate

$$
\begin{equation*}
\iint_{A}(2 x-3 y) d x d y \tag{1}
\end{equation*}
$$

where A is the triangle with vertices $(0,0),(2,1)$ and $(2,0)$. Do the integral in both orders!
2. Find the moment of inertia

$$
\begin{equation*}
I_{x}=\iiint\left(y^{2}+z^{2}\right) \rho(x, y) d V \tag{2}
\end{equation*}
$$

of the solid cone with surface $x^{2}+y^{2}=z^{2}$, with variable density $\rho(x, y)=$ $\left(x^{2}+y^{2}\right) b$, with b a constant.
3. Consider a thin plate whose form is given by the boundaries $x=0, x=1, y=0$ and $y=x^{3}$. Calculate the coordinates of the center of mass of the plate, if the density is given by $\rho(x, y)=c x y^{2}$, with c a constant.
4. Calculate $\nabla \phi$ and $(\nabla \cdot \nabla) \phi$, for $\phi\left(x_{1}, x_{2}, x_{3}\right)=\sin x_{1}+x_{1}^{2} x_{2} x_{3}$.
5. Show that (use $\epsilon_{i j k}$)
(a) $\vec{\nabla} \times(\vec{\nabla} \times \vec{v})=\vec{\nabla}(\vec{\nabla} \cdot \vec{v})-\nabla^{2} \vec{v}$
(b) $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{v})=0$
for any smooth vector field \vec{v}.

