PHZ3113–Introduction to Theoretical Physics Fall 2008 Problem Set 7 September 24, 2008

Due: Friday, Sept. 26, 2008 Reading: Boas chapt. 6

- 1. Given a vector field $\vec{F} = (2x 3y)\hat{i} (3x 2y)\hat{j}$, find $\int \vec{F} \cdot d\vec{r}$ along the circle $x^2 + y^2 = 2$ from (1,1) to (1,-1) in 2 different ways:
 - (a) by changing to polar coordinates $x = \sqrt{2}\cos\theta$ and $y = \sqrt{2}\sin\theta$
 - (b) by showing that $\vec{\nabla} \times \vec{F} = 0$, arguing that this means the integral is independent of the path, and choosing a simpler path.
- 2. The gravitational force on a mass m a displacement \vec{r} from another mass M is $\vec{F}(\vec{r}) = -GMm\vec{r}/r^3$. Show that it's a conservative force.
- 3. A vector field \vec{a} has the form $\vec{a}(x_1, x_2, x_3) = (x_1 + \alpha x_2, x_2 + \beta x_1, x_3)$. Determine α and β such that $\vec{\nabla} \times \vec{a} = 0$, and find the corresponding scalar potential.
- 4. If f(r) is a differentiable function of $r = |\vec{r}|$, calculate $\vec{\nabla} \times (\vec{r}f(r))$.
- 5. If \vec{V} is any smooth vector field, S a closed surface with measure $d\vec{\sigma} = \hat{n}d\sigma$, where \hat{n} is the unit normal to the surface, prove that

$$\int_{S} \vec{\nabla} \times \vec{V} \cdot d\vec{\sigma} = 0 \tag{1}$$

Explain in a sentence or two why this is true.