# PHZ3113-Introduction to Theoretical Physics 

Fall 2008
Problem Set 7
September 24, 2008

Due: Friday, Sept. 26, 2008
Reading: Boas chapt. 6

1. Given a vector field $\vec{F}=(2 x-3 y) \hat{i}-(3 x-2 y) \hat{j}$, find $\int \vec{F} \cdot d \vec{r}$ along the circle $x^{2}+y^{2}=2$ from $(1,1)$ to $(1,-1)$ in 2 different ways:
(a) by changing to polar coordinates $x=\sqrt{2} \cos \theta$ and $y=\sqrt{2} \sin \theta$
(b) by showing that $\vec{\nabla} \times \vec{F}=0$, arguing that this means the integral is independent of the path, and choosing a simpler path.
2. The gravitational force on a mass $m$ a displacement $\vec{r}$ from another mass $M$ is $\vec{F}(\vec{r})=-G M m \vec{r} / r^{3}$. Show that it's a conservative force.
3. A vector field $\vec{a}$ has the form $\vec{a}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+\alpha x_{2}, x_{2}+\beta x_{1}, x_{3}\right)$. Determine $\alpha$ and $\beta$ such that $\vec{\nabla} \times \vec{a}=0$, and find the corresponding scalar potential.
4. If $f(r)$ is a differentiable function of $r=|\vec{r}|$, calculate $\vec{\nabla} \times(\vec{r} f(r))$.
5. If $\vec{V}$ is any smooth vector field, $S$ a closed surface with measure $d \vec{\sigma}=\hat{n} d \sigma$, where $\hat{n}$ is the unit normal to the surface, prove that

$$
\begin{equation*}
\int_{S} \vec{\nabla} \times \vec{V} \cdot d \vec{\sigma}=0 \tag{1}
\end{equation*}
$$

Explain in a sentence or two why this is true.

