$PHZ3113-Introduction\ to\ Theoretical\ Physics$

Fall 2008

Problem Set 8

September 26, 2008

Due: Friday, Oct. 3, 2008 Reading: Boas chapt. 6

- 1. Verify the divergence theorem for the vector field $\vec{v} = (x_2, -2, x_1)$ and the volume bounded by $0 \le x_1 \le 1$, $0 \le x_2 \le 3$, $0 \le x_3 \le 2$. In other words, calculate the volume integral of the divergence, and the surface integral over its boundary, and show they are equal.
- 2. The magnetic field is related to the vector potential by $\vec{B} = \vec{\nabla} \times \vec{A}$.
 - (a) Show that the vector field $\vec{A} = \frac{1}{2}(\vec{B} \times \vec{r})$ corresponds to a constant \vec{B} .
 - (b) Vector \vec{B} is formed by the product of two gradients, $\vec{B} = (\vec{\nabla}u) \times (\vec{\nabla}v)$, where u and v are scalar functions. Show that \vec{B} is solenoidal, i.e. divergenceless.
 - (c) Show that $\vec{A} = \frac{1}{2}(u\vec{\nabla}v v\vec{\nabla}u)$ is a vector potential for \vec{B} of the previous part.
 - (d) Since $\vec{B} = \vec{\nabla} \times \vec{A}$, one may write Stokes' theorem as

$$\int \vec{B} \cdot d\vec{a} = \oint \vec{A} \cdot d\vec{r}. \tag{1}$$

Show that this equation is invariant under the transformation $\vec{A} \to \vec{A} + \vec{\nabla} \psi$, where ψ is any scalar.

3. Show

$$\delta(g(x)) = \sum_{a_n} \frac{\delta(x - a_n)}{|g'(a_n)|},\tag{2}$$

where a_n are the zeros of g(x) = 0.

- 4. Evaluate $\int_0^\infty (3x^2 + 5)\delta(2x^2 + 3x 2)$
- 5. Write expressions for the charge density (charge/unit volume) in terms of the appropriate δ -functions for:
 - (a) a point charge located at the point \vec{R} .
 - (b) an infinitesimal shell of charge of radius a.