PHZ3113-Introduction to Theoretical Physics

Fall 2008

Problem Set 8 Solutions

Oct. 6, 2008
1.

$$
\begin{equation*}
\int \vec{\nabla} \cdot \vec{v}=0 . \tag{1}
\end{equation*}
$$

So we need to show that the surface integral $\int \vec{v} \cdot d \vec{a}$ over the parallelepiped also vanishes. For the faces:
(a) $x_{1}=0,0 \leq x_{2} \leq 3,0 \leq x_{3} \leq 2$:

$$
\begin{align*}
& d \vec{a}=d x_{2} d x_{3}\left(-\hat{x}_{1}\right) \quad \vec{v} \cdot d \vec{a}=-x_{2} d x_{2} d x_{3} \\
& \Rightarrow \quad \int_{A_{1}} \vec{v} \cdot d \vec{a}=-\int_{0}^{3} x_{2} d x_{2} \int_{0}^{2} d x_{3}=-9 \tag{2}
\end{align*}
$$

(b) $x_{1}=1,0 \leq x_{2} \leq 3,0 \leq x_{3} \leq 2$:

$$
\begin{align*}
& d \vec{a}=d x_{2} d x_{3}\left(\hat{x}_{1}\right) \quad \vec{v} \cdot d \vec{a}=x_{2} d x_{2} d x_{3} \\
& \Rightarrow \quad \int_{A_{2}} \vec{v} \cdot d \vec{a}=\int_{0}^{3} x_{2} d x_{2} \int_{0}^{2} d x_{3}=9 \tag{3}
\end{align*}
$$

(c) $x_{2}=0,0 \leq x_{1} \leq 1,0 \leq x_{3} \leq 2$:

$$
\begin{align*}
& d \vec{a}=d x_{1} d x_{3}\left(-\hat{x}_{2}\right) \quad \vec{v} \cdot d \vec{a}=2 d x_{1} d x_{3} \\
& \Rightarrow \quad \int_{A_{3}} \vec{v} \cdot d \vec{a}=2 \int_{0}^{1} d x_{1} \int_{0}^{2} d x_{3}=4 \tag{4}
\end{align*}
$$

(d) $x_{2}=3,0 \leq x_{1} \leq 1,0 \leq x_{3} \leq 2$:

$$
\begin{align*}
& d \vec{a}=d x_{1} d x_{3}\left(\hat{x}_{2}\right) \quad \vec{v} \cdot d \vec{a}=-2 d x_{1} d x_{3} \\
& \Rightarrow \quad \int_{A_{4}} \vec{v} \cdot d \vec{a}=2 \int_{0}^{1} d x_{1} \int_{0}^{2} d x_{3}=-4 \tag{5}
\end{align*}
$$

(e) $x_{3}=0,0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 3$:

$$
\begin{align*}
& d \vec{a}=d x_{1} d x_{2}\left(-\hat{x}_{3}\right) \quad \vec{v} \cdot d \vec{a}=-x_{1} d x_{1} d x_{2} \\
& \Rightarrow \quad \int_{A_{5}} \vec{v} \cdot d \vec{a}=\int_{0}^{1} x_{1} d x_{1} \int_{0}^{3} d x_{2}=-\frac{3}{2} \tag{6}
\end{align*}
$$

(f) $x_{3}=3,0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 3$:

$$
\begin{align*}
& d \vec{a}=d x_{1} d x_{2}\left(\hat{x}_{3}\right) \quad \vec{v} \cdot d \vec{a}=x_{1} d x_{1} d x_{2} \\
& \Rightarrow \quad \int_{A_{6}} \vec{v} \cdot d \vec{a}=\int_{0}^{1} x_{1} d x_{1} \int_{0}^{3} d x_{2}=\frac{3}{2} \tag{7}
\end{align*}
$$

... so the surface integral over the faces cancel pairwise.
2. (a) Basic proof is as follows:

$$
\begin{align*}
\vec{\nabla} \times \vec{A} & =\vec{\nabla} \times \frac{1}{2}(\vec{B} \times \vec{r})=\frac{1}{2} \vec{B}(\vec{\nabla} \cdot \vec{r})-\frac{1}{2}(\vec{B} \cdot \vec{\nabla}) \vec{r} \\
& =\frac{3}{2} \vec{B}-\frac{1}{2} \vec{B}=\vec{B} \tag{8}
\end{align*}
$$

for any constant \vec{B}. In the 2 nd step we could not have pulled \vec{B} to the left of the differential operator unless it were constant,

$$
\begin{align*}
\left(\vec{\nabla} \times(\vec{B} \times \vec{r})_{i}\right. & =\epsilon_{i j k} \nabla_{j}(\vec{B} \times \vec{r})_{k}=\epsilon_{i j k} \nabla_{j} \epsilon_{k \ell m} B_{\ell} x_{m} \\
& =\left(\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell} \nabla_{j} B_{\ell} x_{m}\right. \\
& =\left(\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell}\right)\left[\left(\nabla_{j} B_{\ell}\right) x_{m}+B_{\ell}\left(\nabla_{j} x_{m}\right)\right] . \tag{9}
\end{align*}
$$

Only for constant \vec{B} does the first term in the square brackets vanish, giving you (8).
(b)

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=\vec{\nabla} \cdot(\vec{\nabla} u \times \vec{\nabla} v)=\vec{\nabla} v \cdot(\vec{\nabla} \times \vec{\nabla} u)-\vec{\nabla} u \cdot(\vec{\nabla} \times \vec{\nabla} v)=0, \tag{10}
\end{equation*}
$$

where the first equality follows from the gradient version of the "BACCAB" identity (see vector identity sheet) and the second identity from $\vec{\nabla} \times \vec{\nabla} \phi=0$.
(c)

$$
\begin{aligned}
\vec{\nabla} \times \vec{A} & =\frac{1}{2} \vec{\nabla} \times(u \vec{\nabla} v-v \vec{\nabla} u) \\
& =\frac{1}{2}[u \vec{\nabla} \times \vec{\nabla} v+(\vec{\nabla} u \times \vec{\nabla} v)-v \vec{\nabla} \times \vec{\nabla} u-(\vec{\nabla} v \times \vec{\nabla} u)] \\
& =\frac{1}{2}[0+(\vec{\nabla} u \times \vec{\nabla} v)-0-(\vec{\nabla} v \times \vec{\nabla} u])=(\vec{\nabla} u \times \vec{\nabla} v)=\vec{B}
\end{aligned}
$$

(d) Transformed magnetic field $\vec{B}^{\prime}=\vec{\nabla} \times(\vec{A}+\vec{\nabla} \psi)=\vec{B}+\vec{\nabla} \times \vec{\nabla} \psi=0$. So the left hand side of Stokes' law is invariant. The extra term on the right hand side generated by the transformation is

$$
\begin{equation*}
\oint \vec{\nabla} \psi \cdot d \vec{r}=0 \tag{11}
\end{equation*}
$$

since the integral is taken around a closed loop and the vector field being integrated around the loop is the gradient of a scalar (conservative).
3. Expand function $g(x)$ in the neigbhorhood of each point where its argument becomes zero; only at these points will the δ-function be significant:

$$
\begin{equation*}
\int f(x) \delta(g(x)) d x=\sum_{n} \int_{a_{n}-\epsilon}^{a_{n}+\epsilon} f(x) \delta\left[g\left(a_{n}\right)+\left(x-a_{n}\right) g^{\prime}\left(a_{n}\right)\right] d x \tag{12}
\end{equation*}
$$

where ϵ is a small quantity. Note also that $g\left(a_{n}\right)=0$ by definition. Since we know that $\delta(a x)=\frac{1}{|a|} \delta(x)$, we may write

$$
\begin{equation*}
=\sum_{n} \int d x f(x) \frac{1}{\left|g^{\prime}\left(a_{n}\right)\right|} \delta\left(x-a_{n}\right) \tag{13}
\end{equation*}
$$

as desired. Note this is not an approximation, since the δ function is exactly zero away from the zeros of its argument.
4. Before proceeding, note that the argument of the δ function has 2 roots, but only one of them is within the range of integration, $x=1 / 2$. So

$$
\begin{aligned}
\int_{0}^{\infty}\left(3 x^{2}+5\right) \delta\left(2 x^{2}+3 x-2\right) & =\int\left(3 x^{2}+5\right) \frac{\delta(x-1 / 2)}{\left|4 \cdot \frac{1}{2}+3\right|} \\
& =\frac{1}{5} \int\left(3 x^{2}+5\right) \delta(x-1 / 2)=\frac{1}{5} \cdot \frac{23}{4}=\frac{23}{20}
\end{aligned}
$$

5. Pt. charge at $\vec{R}: \rho(\vec{r})=q \delta^{(3)}(\vec{r}-\vec{R})$. Shell $\rho(\vec{r})=\sigma \delta(r-a)$, where $\sigma=q /\left(4 \pi a^{2}\right)$. Note the prefactor of the latter is fixed by the fact that

$$
\begin{equation*}
\int d \tau \rho(r)=q \tag{14}
\end{equation*}
$$

