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1.
∫

~∇ · ~v = 0. (1)

So we need to show that the surface integral
∫

~v ·d~a over the parallelepiped also
vanishes. For the faces:

(a) x1 = 0, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2:

d~a = dx2dx3(−x̂1) ~v · d~a = −x2dx2dx3

⇒
∫

A1

~v · d~a = −
∫ 3

0

x2dx2

∫ 2

0

dx3 = −9 (2)

(b) x1 = 1, 0 ≤ x2 ≤ 3, 0 ≤ x3 ≤ 2:

d~a = dx2dx3(x̂1) ~v · d~a = x2dx2dx3

⇒
∫

A2

~v · d~a =

∫ 3

0

x2dx2

∫ 2

0

dx3 = 9 (3)

(c) x2 = 0, 0 ≤ x1 ≤ 1, 0 ≤ x3 ≤ 2:

d~a = dx1dx3(−x̂2) ~v · d~a = 2dx1dx3

⇒
∫

A3

~v · d~a = 2

∫ 1

0

dx1

∫ 2

0

dx3 = 4 (4)

(d) x2 = 3, 0 ≤ x1 ≤ 1, 0 ≤ x3 ≤ 2:

d~a = dx1dx3(x̂2) ~v · d~a = −2dx1dx3

⇒
∫

A4

~v · d~a = 2

∫ 1

0

dx1

∫ 2

0

dx3 = −4 (5)

(e) x3 = 0, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 3:

d~a = dx1dx2(−x̂3) ~v · d~a = −x1dx1dx2

⇒
∫

A5

~v · d~a =

∫ 1

0

x1 dx1

∫ 3

0

dx2 = −3

2
(6)

(f) x3 = 3, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 3:

d~a = dx1dx2(x̂3) ~v · d~a = x1dx1dx2

⇒
∫

A6

~v · d~a =

∫ 1

0

x1 dx1

∫ 3

0

dx2 =
3

2
(7)
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... so the surface integral over the faces cancel pairwise.

2. (a) Basic proof is as follows:

~∇× ~A = ~∇× 1

2
( ~B × ~r) =

1

2
~B(~∇ · ~r)− 1

2
( ~B · ~∇)~r

=
3

2
~B − 1

2
~B = ~B (8)

for any constant ~B. In the 2nd step we could not have pulled ~B to the left
of the differential operator unless it were constant,

(~∇× ( ~B × ~r)i = εijk∇j( ~B × ~r)k = εijk∇jεk`mB`xm

= (δi`δjm − δimδj`)∇jB`xm

= (δi`δjm − δimδj`)[(∇jB`)xm + B`(∇jxm)]. (9)

Only for constant ~B does the first term in the square brackets vanish,
giving you (8).

(b)

~∇ · ~B = ~∇ · (~∇u× ~∇v) = ~∇v · (~∇× ~∇u)− ~∇u · (~∇× ~∇v) = 0, (10)

where the first equality follows from the gradient version of the “BAC-
CAB” identity (see vector identity sheet) and the second identity from
~∇× ~∇φ = 0.

(c)

~∇× ~A =
1

2
~∇× (u~∇v − v~∇u)

=
1

2
[u~∇× ~∇v + (~∇u× ~∇v)− v~∇× ~∇u− (~∇v × ~∇u)]

=
1

2
[0 + (~∇u× ~∇v)− 0− (~∇v × ~∇u]) = (~∇u× ~∇v) = ~B

(d) Transformed magnetic field ~B′ = ~∇× ( ~A + ~∇ψ) = ~B + ~∇× ~∇ψ = 0. So
the left hand side of Stokes’ law is invariant. The extra term on the right
hand side generated by the transformation is

∮
~∇ψ · d~r = 0, (11)

since the integral is taken around a closed loop and the vector field being
integrated around the loop is the gradient of a scalar (conservative).

3. Expand function g(x) in the neigbhorhood of each point where its argument
becomes zero; only at these points will the δ-function be significant:

∫
f(x)δ(g(x))dx =

∑
n

∫ an+ε

an−ε

f(x)δ[g(an) + (x− an)g′(an)]dx, (12)
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where ε is a small quantity. Note also that g(an) = 0 by definition. Since we
know that δ(ax) = 1

|a|δ(x), we may write

=
∑

n

∫
dxf(x)

1

|g′(an)|δ(x− an) (13)

as desired. Note this is not an approximation, since the δ function is exactly
zero away from the zeros of its argument.

4. Before proceeding, note that the argument of the δ function has 2 roots, but
only one of them is within the range of integration, x = 1/2. So

∫ ∞

0

(3x2 + 5)δ(2x2 + 3x− 2) =

∫
(3x2 + 5)

δ(x− 1/2)

|4 · 1
2

+ 3|
=

1

5

∫
(3x2 + 5)δ(x− 1/2) =

1

5
· 23

4
=

23

20

5. Pt. charge at ~R: ρ(~r) = qδ(3)(~r− ~R). Shell ρ(~r) = σδ(r−a), where σ = q/(4πa2).
Note the prefactor of the latter is fixed by the fact that

∫
dτρ(r) = q (14)

.
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