PHZ3113-Introduction to Theoretical Physics

Fall 2008
Problem Set 9
Oct. 4, 2008

Due: Wednesday, Oct. 8, 2008
Reading: Boas sec. 5-4,10.8,10.9

1. Calculate $\vec{\nabla} \Phi$ and $\nabla^{2} \Phi$ if $\Phi=$
(a) $\sin \phi$
(b) $r^{2} \sin \theta$
in spherical coordinates.
2. Consider the vector field in Cartesian coordinates

$$
\begin{equation*}
\vec{F}=\left(x^{2} y, 2 y z, x+z\right) \tag{1}
\end{equation*}
$$

and calculate $\vec{\nabla} \cdot \vec{F}$ and $\vec{\nabla} \times \vec{F}$ in cylindrical coordinates, expressed in terms of cylindrical basis vectors $\hat{r}, \hat{\theta}$, and \hat{z}.
3. Show that the Laplace equation of electrostatics

$$
\begin{equation*}
\nabla^{2} \Phi=0 \tag{2}
\end{equation*}
$$

is satisfied in cylindrical coordinates if $\Phi=r^{n} \sin n \theta$ for $r>0$ and n an integer.
4. Calculate the volume integral

$$
\begin{equation*}
\int d \tau \sqrt{x_{1}^{2}+x_{2}^{2}} \tag{3}
\end{equation*}
$$

over the region enclosed between the two surfaces

$$
\begin{equation*}
x_{3}=x_{1}^{2}+x_{2}^{2} \quad \text { and } \quad x_{3}=9-\left(x_{1}^{2}+x_{2}^{2}\right) . \tag{4}
\end{equation*}
$$

Hint: use cylindrical coordinates.
5. Calculate the arc length $d s^{2}$ for the elliptical cylindrical coordinate system, u, v, w such that

$$
\begin{equation*}
x_{1}=a \cosh u \cos v ; \quad x_{2}=a \sinh u \sin v ; \quad x_{3}=w . \tag{5}
\end{equation*}
$$

