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1. Calculate the Joule-Thompson coefficient
(

∂u
∂v

)
T
, where u is the internal en-

ergy and v is the volume, for a gas with equation of state p = RT/(v−b)−a/v2.
[Hint: use du = Tds− pdv and Maxwell relation

(
∂s
∂v

)
T

=
(

∂p
∂T

)
V
.]

Start with du = Tds− pdv and p = RT/(v− b)− a/v2. Consider s = s(v, T ).
Then

du = T

[(
∂s

∂V

)

T

dv +

(
∂s

∂T

)

v

dT

]
− pdv. (1)

Now we see that the derivative requested is
(

∂u

∂v

)

T

= T

(
∂s

∂v

)

T

− p = T

(
∂p

∂T

)

v

− p = T
R

v − b
− p =

a

v2
(2)

2. Consider the triangle in the (x, y) plane with vertices at (-1,0), (1,0), and (0,1).
Evaluate the closed line integral

I =

∮
(−yx̂ + xŷ) · d~r (3)

around the boundary of the triangle in the anticlockwise direction.

d~r = x̂dx + ŷdy, so (−yx̂ + xŷ) · d~r = −ydx + xdy.

On leg (-1,0) → (1,0) we have y = 0, so integral is
∫ 1

−1
(−y)dx = 0. On the leg

(1,0) → (0,1) we have y = −x + 1, so integral is -
∫ 0

1
(−x + 1)dx +

∫ 1

0
(1− y)dy =

1
2

+ 1
2

= 1. On the path (0,1) → (-1,0) we have y = x + 1, so integral is

− ∫ −1

0
(x + 1)dx +

∫ 0

1
(y − 1)dy = 1

2
+ 1

2
= 1. So total line integral is 2.

3. Consider the parabola y = 4 + 5x2. Find the closest point to the origin on this
curve by the method of Lagrange multipliers.

I actually did it 3 ways to illustrate the possibilities:

(a) substituting explicitly into the distance formula for y(x) and solve the con-
ventional 1D minimization problem.

(b) substituting explicitly into the distance formula for x(y) and solve the con-
ventional 1D minimization problem.



(c) using the method of Lagrange multipliers.

We’ll minimize x2 + y2 rather than
√

x2 + y2 as usual:

(a) y = 4 + 5x2 so x2 + y2 = x2 + (4 + 5x2)2. Minimize

d

dx

(
25x4 + 41x2 + 16

)
= 100x3 + 82x = 0 ⇒ x = 0, y = 4 X (4)

(b) x2 = (y − 4)/5, so minimize (y − 4)/5 + y2:

d

dy
(y − 4)/5 + y2 =

1

5
+ 2y = 0 ⇒ y = − 1

10
. (5)

But this value cannot lie on the parabola, so it must be spurious somehow.
Going back, we see that at this value of y the quantity x2 on the parabola
becomes negative, so this is not a valid solution for a point x, y on the
parablola. The minimum must take place on the boundary of the set of x, y
lying on the parabola, i.e. y = 4, implying x = 0.

(c) Take f = x2+y2, function to be minimized in unconstrained space according
to M. Lagrange is

F = f + λ(4 + 5x2 − y) (6)

So 3 equations for a minimum are

∂F

∂x
= 0 = 2x + 10xλ ;

∂F

∂y
= 0 = 2y − λ ;

∂F

∂λ
= 0 = 4 + 5x2 − y.(7)

1st equation admits a solution x = 0 or λ = −1/5. The first one is correct,
yields y = 4 from constraint (3rd) equation. Second one gives y = −1/10
again, this is the spurious solution discussed above.

4. Calculate the total derivative dy/dx for x = y−2
y+4

in two ways:

(a) (4 pts.) explicitly solve for y(x)

(b) (4 pts.) use implicit differentiation.

(c) (2pts.) Verifiy that your answer is the same in both cases.

(a) Solve by finding y(x), y = (4x + 2)/(1− x), so dy/dx = 6/(1− x)2.

(b) Implicitly:

x(y + 4) = y − 2 ⇒ dx(y + 4) + xdy = dy

⇒ dy =
dx(y + 4)

1− x
⇒ dy

dx
=

y + 4

1− x
(8)

(c)

4 + y

1− x
=

4 + 4x+2
1−x

1− x
=

6

(1− x)2
(9)



5. Using the properties of the Levi-Civita symbol, verify the vector identity

~A× (~∇× ~A) =
1

2
~∇(A2)− ( ~A · ~∇) ~A (10)

repeated summation index convention:

(
~A× (~∇× ~A)

)
i

= εijkAj(~∇× ~A)k = εijkAjεk`m∇`Am = (εijkε`mk)Aj∇`Am

= (δi`δjm − δimδj`)Aj∇`Am =
1

2
∇iA

2 − ( ~A · ~∇)Ai (11)

Note that I used Aj∇iAj = 1
2
∇iA

2, just the product rule.

6. (Extra credit, 5 pts.) In the integral

I =

∫ 1/2

x=0

∫ 1−x

y=x

(
x− y

x + y

)2

dydx, (12)

make the transformation

x =
1

2
(r − s) ; y =

1

2
(r + s), (13)

and evaluate I. [Hint: sketch the area of integration in x − y plane, then draw
the r and s axes. Determine the area of r − s integration.]

FIG. 1: Variables x, y transformation to r, s.



Jacobian of inverse transformation r = x + y, s = y − x is

J

(
x, y

r, s

)
=

∣∣∣∣∣∣
1
2
−1

2

1
2

1
2

∣∣∣∣∣∣
=

1

2
, (14)

so

I =

∫ 1

0

dr

∫ r

0

ds
(s

r

)2

· 1

2
=

∫ 1

0

1

r2
dr

(
1

2

s3

3

∣∣∣∣
r

0

)
=

∫ 1

0

r

6
dr =

1

12
. (15)

7. (Extra credit, 5 pts.) Planck’s theory of quantized oscillators led to an average
energy

〈ε〉 =

∑∞
n=1 nε0 exp(−nε0/kT )∑∞

n=0 exp(−nε0/kT )
, (16)

where ε0 was a constant energy. Find d〈ε〉/dT in closed form (evaluate all sums).

First call α = ε0/kT . Then note that
∑

n exp(−αn) = (1− exp(−α))−1 is the
sum of the geometric series, and that

d

dα

∑
n

exp(−αn) = −
∑

n

n exp(−αn)

and
d

dα

∑
n

exp(−αn) =
d

dα

(
1

1− e−α

)
= − e−α

(1− e−α)2
(17)

So

〈ε〉 = −ε0
e−α

1− e−α
=

ε0

eα − 1
. (18)

So

d〈ε〉
dT

=
d〈ε〉
dα

dα

dT
= ε0 · ε0

k
· −1

T 2

eα

(eα − 1)2
= kα2 eα

(eα − 1)2
. (19)


