PHY3113-Introduction to Theoretical Physics
 Fall 2008

 Test 1 SOLUTIONS

 Test 1 SOLUTIONS}

Oct. 1, 2008

1. Calculate the Joule-Thompson coefficient $\left(\frac{\partial u}{\partial v}\right)_{T}$, where u is the internal energy and v is the volume, for a gas with equation of state $p=R T /(v-b)-a / v^{2}$. [Hint: use $d u=T d s-p d v$ and Maxwell relation $\left(\frac{\partial s}{\partial v}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}$.]

Start with $d u=T d s-p d v$ and $p=R T /(v-b)-a / v^{2}$. Consider $s=s(v, T)$. Then

$$
\begin{equation*}
d u=T\left[\left(\frac{\partial s}{\partial V}\right)_{T} d v+\left(\frac{\partial s}{\partial T}\right)_{v} d T\right]-p d v \tag{1}
\end{equation*}
$$

Now we see that the derivative requested is

$$
\begin{equation*}
\left(\frac{\partial u}{\partial v}\right)_{T}=T\left(\frac{\partial s}{\partial v}\right)_{T}-p=T\left(\frac{\partial p}{\partial T}\right)_{v}-p=T \frac{R}{v-b}-p=\frac{a}{v^{2}} \tag{2}
\end{equation*}
$$

2. Consider the triangle in the (x, y) plane with vertices at $(-1,0),(1,0)$, and $(0,1)$. Evaluate the closed line integral

$$
\begin{equation*}
I=\oint(-y \hat{x}+x \hat{y}) \cdot d \vec{r} \tag{3}
\end{equation*}
$$

around the boundary of the triangle in the anticlockwise direction.

$$
d \vec{r}=\hat{x} d x+\hat{y} d y, \text { so }(-y \hat{x}+x \hat{y}) \cdot d \vec{r}=-y d x+x d y .
$$

On leg $(-1,0) \rightarrow(1,0)$ we have $y=0$, so integral is $\int_{-1}^{1}(-y) d x=0$. On the leg $(1,0) \rightarrow(0,1)$ we have $y=-x+1$, so integral is $-\int_{1}^{0}(-x+1) d x+\int_{0}^{1}(1-y) d y=$ $\frac{1}{2}+\frac{1}{2}=1$. On the path $(0,1) \rightarrow(-1,0)$ we have $y=x+1$, so integral is $-\int_{0}^{-1}(x+1) d x+\int_{1}^{0}(y-1) d y=\frac{1}{2}+\frac{1}{2}=1$. So total line integral is 2 .
3. Consider the parabola $y=4+5 x^{2}$. Find the closest point to the origin on this curve by the method of Lagrange multipliers.

I actually did it 3 ways to illustrate the possibilities:
(a) substituting explicitly into the distance formula for $y(x)$ and solve the conventional 1D minimization problem.
(b) substituting explicitly into the distance formula for $x(y)$ and solve the conventional 1D minimization problem.
(c) using the method of Lagrange multipliers.

We'll minimize $x^{2}+y^{2}$ rather than $\sqrt{x^{2}+y^{2}}$ as usual:
(a) $y=4+5 x^{2}$ so $x^{2}+y^{2}=x^{2}+\left(4+5 x^{2}\right)^{2}$. Minimize

$$
\begin{equation*}
\frac{d}{d x}\left(25 x^{4}+41 x^{2}+16\right)=100 x^{3}+82 x=0 \quad \Rightarrow \quad x=0, y=4 \tag{4}
\end{equation*}
$$

(b) $x^{2}=(y-4) / 5$, so minimize $(y-4) / 5+y^{2}$:

$$
\begin{equation*}
\frac{d}{d y}(y-4) / 5+y^{2}=\frac{1}{5}+2 y=0 \quad \Rightarrow \quad y=-\frac{1}{10} . \tag{5}
\end{equation*}
$$

But this value cannot lie on the parabola, so it must be spurious somehow. Going back, we see that at this value of y the quantity x^{2} on the parabola becomes negative, so this is not a valid solution for a point x, y on the parablola. The minimum must take place on the boundary of the set of x, y lying on the parabola, i.e. $y=4$, implying $x=0$.
(c) Take $f=x^{2}+y^{2}$, function to be minimized in unconstrained space according to M. Lagrange is

$$
\begin{equation*}
F=f+\lambda\left(4+5 x^{2}-y\right) \tag{6}
\end{equation*}
$$

So 3 equations for a minimum are

$$
\begin{equation*}
\frac{\partial F}{\partial x}=0=2 x+10 x \lambda \quad ; \quad \frac{\partial F}{\partial y}=0=2 y-\lambda ; \quad \frac{\partial F}{\partial \lambda}=0=4+5 x^{2}-y \tag{7}
\end{equation*}
$$

1st equation admits a solution $x=0$ or $\lambda=-1 / 5$. The first one is correct, yields $y=4$ from constraint (3rd) equation. Second one gives $y=-1 / 10$ again, this is the spurious solution discussed above.
4. Calculate the total derivative $d y / d x$ for $x=\frac{y-2}{y+4}$ in two ways:
(a) (4 pts.) explicitly solve for $y(x)$
(b) (4 pts .) use implicit differentiation.
(c) (2pts.) Verifiy that your answer is the same in both cases.
(a) Solve by finding $y(x), y=(4 x+2) /(1-x)$, so $d y / d x=6 /(1-x)^{2}$.
(b) Implicitly:

$$
\begin{array}{r}
x(y+4)=y-2 \quad \Rightarrow \quad d x(y+4)+x d y=d y \\
\Rightarrow d y=\frac{d x(y+4)}{1-x} \Rightarrow \frac{d y}{d x}=\frac{y+4}{1-x} \tag{8}
\end{array}
$$

(c)

$$
\begin{equation*}
\frac{4+y}{1-x}=\frac{4+\frac{4 x+2}{1-x}}{1-x}=\frac{6}{(1-x)^{2}} \tag{9}
\end{equation*}
$$

5. Using the properties of the Levi-Civita symbol, verify the vector identity

$$
\begin{equation*}
\vec{A} \times(\vec{\nabla} \times \vec{A})=\frac{1}{2} \vec{\nabla}\left(A^{2}\right)-(\vec{A} \cdot \vec{\nabla}) \vec{A} \tag{10}
\end{equation*}
$$

repeated summation index convention:

$$
\begin{align*}
(\vec{A} \times(\vec{\nabla} \times \vec{A}))_{i} & =\epsilon_{i j k} A_{j}(\vec{\nabla} \times \vec{A})_{k}=\epsilon_{i j k} A_{j} \epsilon_{k \ell m} \nabla_{\ell} A_{m}=\left(\epsilon_{i j k} \epsilon_{\ell m k}\right) A_{j} \nabla_{\ell} A_{m} \\
& =\left(\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell}\right) A_{j} \nabla_{\ell} A_{m}=\frac{1}{2} \nabla_{i} A^{2}-(\vec{A} \cdot \vec{\nabla}) A_{i} \tag{11}
\end{align*}
$$

Note that I used $A_{j} \nabla_{i} A_{j}=\frac{1}{2} \nabla_{i} A^{2}$, just the product rule.
6. (Extra credit, 5 pts.) In the integral

$$
\begin{equation*}
I=\int_{x=0}^{1 / 2} \int_{y=x}^{1-x}\left(\frac{x-y}{x+y}\right)^{2} d y d x \tag{12}
\end{equation*}
$$

make the transformation

$$
\begin{equation*}
x=\frac{1}{2}(r-s) \quad ; \quad y=\frac{1}{2}(r+s), \tag{13}
\end{equation*}
$$

and evaluate I. [Hint: sketch the area of integration in $x-y$ plane, then draw the r and s axes. Determine the area of $r-s$ integration.]

FIG. 1: Variables x, y transformation to r, s.

Jacobian of inverse transformation $r=x+y, s=y-x$ is

$$
J\left(\frac{x, y}{r, s}\right)=\left|\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \tag{14}\\
\frac{1}{2} & \frac{1}{2}
\end{array}\right|=\frac{1}{2},
$$

so

$$
\begin{equation*}
I=\int_{0}^{1} d r \int_{0}^{r} d s\left(\frac{s}{r}\right)^{2} \cdot \frac{1}{2}=\int_{0}^{1} \frac{1}{r^{2}} d r\left(\left.\frac{1}{2} \frac{s^{3}}{3}\right|_{0} ^{r}\right)=\int_{0}^{1} \frac{r}{6} d r=\frac{1}{12} . \tag{15}
\end{equation*}
$$

7. (Extra credit, 5 pts.) Planck's theory of quantized oscillators led to an average energy

$$
\begin{equation*}
\langle\epsilon\rangle=\frac{\sum_{n=1}^{\infty} n \epsilon_{0} \exp \left(-n \epsilon_{0} / k T\right)}{\sum_{n=0}^{\infty} \exp \left(-n \epsilon_{0} / k T\right)} \tag{16}
\end{equation*}
$$

where ϵ_{0} was a constant energy. Find $d\langle\epsilon\rangle / d T$ in closed form (evaluate all sums).

First call $\alpha=\epsilon_{0} / k T$. Then note that $\sum_{n} \exp (-\alpha n)=(1-\exp (-\alpha))^{-1}$ is the sum of the geometric series, and that

$$
\begin{align*}
\frac{d}{d \alpha} \sum_{n} \exp (-\alpha n)= & -\sum_{n} n \exp (-\alpha n) \\
& \text { and } \tag{17}\\
\frac{d}{d \alpha} \sum_{n} \exp (-\alpha n)= & \frac{d}{d \alpha}\left(\frac{1}{1-e^{-\alpha}}\right)=-\frac{e^{-\alpha}}{\left(1-e^{-\alpha}\right)^{2}}
\end{align*}
$$

So

$$
\begin{equation*}
\langle\epsilon\rangle=-\epsilon_{0} \frac{e^{-\alpha}}{1-e^{-\alpha}}=\frac{\epsilon_{0}}{e^{\alpha}-1} . \tag{18}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{d\langle\epsilon\rangle}{d T}=\frac{d\langle\epsilon\rangle}{d \alpha} \frac{d \alpha}{d T}=\epsilon_{0} \cdot \frac{\epsilon_{0}}{k} \cdot \frac{-1}{T^{2}} \frac{e^{\alpha}}{\left(e^{\alpha}-1\right)^{2}}=k \alpha^{2} \frac{e^{\alpha}}{\left(e^{\alpha}-1\right)^{2}} \tag{19}
\end{equation*}
$$

