## PHY3113-Introduction to Theoretical Physics

Fall 2007

## Test $2-55$ minutes

Oct. 26, 2007

No other materials allowed. If you can't do one part of a problem, solve subsequent parts in terms of unknown answer-define clearly. Do 4 of 6 problems, clearly indicating which you want graded!. You may attempt the remaining two as extra credit as well. All regular parts are worth 10 pts., each extra credit 5 each, for maximum of 50 points.

Useful formulae:

$$
\begin{gathered}
\vec{\nabla} \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \hat{\phi} . \\
\vec{\nabla} \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
x=r \sin \theta \cos \phi=\rho \cos \vartheta \\
y=r \sin \theta \sin \phi=\rho \sin \vartheta \\
z=r \cos \theta=z \\
\nabla \cdot \vec{E}=\rho / \epsilon_{0} \\
\nabla \cdot \vec{B}
\end{gathered}=0 \quad \begin{aligned}
\nabla \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{B} & =\mu_{0} \vec{j}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
\vec{E} & =-\nabla \Phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{\nabla} \psi & =\sum_{i} \hat{q}_{i} \frac{1}{h_{i}} \frac{\partial \psi}{\partial q_{i}}
\end{aligned}
$$

1. (a-c) For each matrix $A$, calculate $A^{\dagger}$, $\operatorname{det} A$ and $A^{-1}$. On this basis, state whether each is Hermitian, unitary, and/or orthogonal, ...:
(a)

$$
\left[\begin{array}{ll}
0 & 1  \tag{1}\\
1 & 0
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{cc}
2 & 1+i  \tag{2}\\
1-i & 3
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha  \tag{3}\\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right]
$$

(d) Solve the system of equations

$$
\left[\begin{array}{cc}
8 & -2 / 3  \tag{4}\\
-4 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

explicitly by Cramer's rule.
2. Evaluate
(a)

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(2 x-\pi) \sin x \tag{5}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{\pi / 4}^{3 \pi / 4} d \theta \delta(\cos \theta)\left(\sin ^{2} \theta+1\right) \tag{6}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\int d \tau \delta(r-a) \tag{7}
\end{equation*}
$$

(note $d \tau$ is 3D volume measure $d^{3} r$ )
(d) What is the charge density $\rho(x, y, z)$ for an infinitely long but infinitesimally thick line of charge, with charge per unit length $\lambda$, oriented parallel to the $x$ axis passing through the point $(0,1,0)$ ?
3. Given a vector field $\vec{F}=r \cos \theta \hat{r}+2 r \hat{\theta}+2 r \cos \theta \sin \phi \hat{\phi}$, calculate
(a) $\vec{\nabla} \cdot \vec{F}$.
(b) $\int_{\tau} \vec{\nabla} \cdot \vec{F} d \tau$, where $\tau$ is the sphere of radius 1 .
(c) $\int_{A} \vec{F} \cdot d \vec{a}$, where $A$ is the surface of the sphere in (b).
(d) Verify Gauss's theorem comparing b) and c).
4. A magnetic vector potential is given by $\vec{A}=B_{0} x \hat{y}$. Consider the cube of side $a$ bounded by the origin and ( $a, a, a$ ). Verify Stokes' theorem

$$
\begin{equation*}
\int B \cdot d \vec{a}=\oint \vec{A} \cdot d \vec{r} \tag{8}
\end{equation*}
$$

around the loop formed by the square in the $x y$ plane which is one of the faces of this cube, by evaluating
(a) by first performing $\int \vec{B} \cdot d \vec{a}$,
(b) then performing $\oint \vec{A} \cdot d \vec{r}$ and checking that Eq. (8) holds.

Now suppose the magnetic field is increasing with time, $B_{0}(t)=\alpha t$, and that the cube is an open framework of wires on its edges. Each wire segment has resistance $R$.
(c) What is $\nabla \times \vec{E}$ generated in the space around the cube?
(d) The line integral of this electric field around the square in the $x y$ plane, $\oint_{\square} \vec{E} \cdot d \vec{\ell}$, is the induced voltage, or EMF. What current flows in the wire square?
5. In the cylindrical coordinate system $\rho, \vartheta, z$,
(a) Calculate the arc length $d s^{2}$ for the cylindrical coordinate system $\rho, \vartheta, z$.
(b) Identify the scale factors $h_{i}$ and write down the gradient of a scalar field $\psi$ in this system.
(c) Write down an expression in terms of the unit vectors $\hat{\rho}, \hat{\vartheta}$, and $\hat{z}$, for the unit vector normal to the surface of a cone of height $h$ and base radius $r$.
(d) Find expressions for $\hat{\rho}, \hat{\vartheta}$, and $\hat{z}$ in terms of $\hat{i}, \hat{j}$, and $\hat{k}$.
6. A vector field has the form

$$
\begin{equation*}
\vec{A}(x, y, z)=(x+\alpha y, y+\beta x, z) \tag{9}
\end{equation*}
$$

(a) Determine $\alpha$ and $\beta$ such that $\nabla \times \vec{A}=0$.
(b) Calculate the corresponding scalar potential $\Phi$. Be sure to clearly specify all unknown constants.
(c) Sketch the vector field $\vec{A}$ in the plane $z=0$ for $\alpha=1$.
(d) Calculate the ratio of the line integrals

$$
\begin{equation*}
\frac{\int_{s_{1}} \vec{A} \cdot d \vec{r}}{\int_{s_{2}} \vec{A} \cdot d \vec{r}} \tag{10}
\end{equation*}
$$

where $s_{1}$ is the path along the diagonal between $a=(0,0,0)$ and $b=$ $(1,1,1)$, and $s_{2}$ is the path $a \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow b$.

