PHY3113-Introduction to Theoretical Physics

Fall 2007

Test 2 SOLUTIONS

Oct. 26, 2007

Useful formulae:

$$
\begin{aligned}
& \vec{\nabla} \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \hat{\phi} . \\
& \vec{\nabla} \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
& x=r \sin \theta \cos \phi=\rho \cos \vartheta \\
& y=r \sin \theta \sin \phi=\rho \sin \vartheta \\
& z=r \cos \theta=z \\
& \nabla \cdot \vec{E}=\rho / \epsilon_{0} \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \times \vec{B}=\mu_{0} \vec{j}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& \vec{E}=-\nabla \Phi \\
& \vec{B}=\nabla \times \vec{A} \\
& \vec{\nabla} \psi=\sum_{i} \hat{q}_{i} \frac{1}{h_{i}} \frac{\partial \psi}{\partial q_{i}}
\end{aligned}
$$

1. For each matrix A, calculate $A^{\dagger}, \operatorname{det} A$ and A^{-1}. On this basis, state whether each is Hermitian, unitary, and/or orthogonal, ...:
(a)

$$
\begin{align*}
A^{\dagger} & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \operatorname{det} A=-1, C^{T}=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right], A^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \tag{1}\\
A^{-1} & =A^{\dagger} \text {, unitary or orthogonal, } \tag{2}\\
A & =A^{\dagger}, \text { hermitian. } \tag{3}
\end{align*}
$$

(b)

$$
\begin{align*}
A^{\dagger} & =\left[\begin{array}{cc}
2 & 1+i \\
1-i & 3
\end{array}\right], \operatorname{det} A=6-2=4, \tag{4}\\
C & =\left[\begin{array}{cc}
3 & -(1-i) \\
-(1+i) & 2
\end{array}\right], C^{T}=\left[\begin{array}{cc}
3 & -(1+i) \\
-(1-i) & 2
\end{array}\right], \tag{5}\\
A^{-1} & =\frac{1}{4}\left[\begin{array}{cc}
3 & -(1+i) \\
-(1-i) & 2
\end{array}\right]=\left[\begin{array}{cc}
3 / 4 & (-1-i) / 4 \\
-(1-i) / 4 & 1 / 2
\end{array}\right] . \tag{6}
\end{align*}
$$

since $A=A^{\dagger}$, hermitian
(c)

$$
A^{-1}=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \tag{7}\\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right], A^{-1}=A^{\dagger}
$$

orthogonal or unitary (real). Note this is a rotation about the y axis by angle α, so inverse is just rotation by $-\alpha$.
(d) Solve the system of equations

$$
\left[\begin{array}{cc}
8 & -2 / 3 \tag{8}\\
-4 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

explicitly by Cramer's rule.

$$
\operatorname{det}\left[\begin{array}{cc}
8 & -2 / 3 \tag{9}\\
-4 & 1 / 2
\end{array}\right]=\frac{4}{3}
$$

so

$$
\begin{array}{r}
x=\frac{3}{4} \operatorname{det}\left[\begin{array}{cc}
1 & -2 / 3 \\
1 & 1 / 2
\end{array}\right]=\frac{7}{8} \\
y=\frac{3}{4} \operatorname{det}\left[\begin{array}{cc}
8 & 1 \\
-4 & 1
\end{array}\right]=9
\end{array}
$$

2. Evaluate
(a)

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(2 x-\pi) \sin x=\frac{1}{2} \int_{-\infty}^{\infty} d x \delta\left(x-\frac{\pi}{2}\right) \sin x=\frac{1}{2} \tag{10}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{\pi / 4}^{3 \pi / 4} d \theta \delta(\cos \theta)\left(\sin ^{2} \theta+1\right)=\int_{\pi / 4}^{3 \pi / 4} d x \frac{\delta\left(\theta-\frac{\pi}{2}\right)}{|\sin \theta|_{\theta=\pi / 2}}\left(\sin ^{2} \theta+1\right)=2 \tag{11}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\int d \tau \delta(r-a)=\int_{0}^{\infty} r^{2} \delta(r-a) d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi=4 \pi a^{2} \tag{12}
\end{equation*}
$$

(d) What is the charge density $\rho(x, y, z)$ for an infinitely long but infinitesimally thick line of charge, with charge per unit length λ, oriented parallel to the x axis passing through the point $(0,1,0)$?

We know it must be proportional to $\delta(y-1) \delta(z)$, and that when we integrate over y and z in a plane perpendicular to the wire, we should recover the full charge density per unit length along x. Thus A

$$
\begin{equation*}
\int d y \int d z \delta(y-1) \delta(z)=\lambda \tag{13}
\end{equation*}
$$

so that

$$
\begin{equation*}
\rho=\lambda \delta(y-1) \delta(z) . \tag{14}
\end{equation*}
$$

Note this has dimensions of charge/ 3D volume.
3. Given a vector field $\vec{F}=r \cos \theta \hat{r}+2 r \hat{\theta}+2 r \cos \theta \sin \phi \hat{\phi}$, calculate
(a)

$$
\begin{align*}
\vec{\nabla} \cdot \vec{F} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{3} \cos \theta\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(2 r \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial(2 r \cos \theta \sin \phi}{\partial \phi}(15) \\
& =3 \cos \theta+2 \cot \theta+2 \cot \theta \cos \phi . \tag{16}
\end{align*}
$$

(b) (volume is sphere radius 1)

$$
\begin{align*}
\int_{\tau} \vec{\nabla} \cdot \vec{F} d \tau & =\int_{0}^{1} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi(3 \cos \theta+2 \cot \theta+2 \cot \theta \cos \phi) \\
& =\frac{1}{3} \times 0=0 \tag{17}
\end{align*}
$$

(c) (area is surface of sphere radius 1)

$$
\begin{align*}
d \vec{a} & =\sin \theta d \theta d \phi \hat{r} \tag{18}\\
\vec{F} \cdot d \vec{a} & =\sin \theta \cos \theta d \theta d \phi \tag{19}\\
\int_{A} \vec{F} \cdot d \vec{a} & =\left.2 \pi \frac{1}{2} \sin ^{2} \theta\right|_{0} ^{\pi}=0 \tag{20}
\end{align*}
$$

(d) So Gauss's theorem is satisfied by comparing b) and c).
4. (a)-(b) First notice that since \vec{A} points along \hat{y} and is $\propto x$, the only contribution to line integral is along segment parallel to y axis at $x=a . \vec{A}$ is const. along this segment, so integral is trivial. The curl of \vec{A} which we need for Stokes' thm. is just the magnetic field \vec{B}, and taking the curl leads to a constant \vec{B} field pointing along z, which is constant over the top face of the cube. Its dot product with the normals of all other faces is zero, so

$$
\begin{align*}
\oint \vec{A} \cdot d \vec{r} & =\int_{0}^{a} B_{0} a d y=B_{0} a^{2} . \tag{21}\\
\vec{B} & =B_{0} \hat{k} \tag{22}\\
\int B \cdot d \vec{a} & =B_{0} a^{2}=\oint \vec{A} \cdot d \vec{r} . \tag{23}
\end{align*}
$$

Now suppose the magnetic field is increasing with time, $B_{0}(t)=\alpha t$, and that the cube is an open framework of wires on its edges. Each wire segment has resistance R.
(c) What is $\nabla \times \vec{E}$ generated in the space around the cube?

Here we need to use Faraday's eqn. $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$. The term on the right hand side of Faraday's law is $-\alpha$, so $\vec{\nabla} \times \vec{E}=-\alpha \hat{k}$.
(d) The line integral of this electric field around the square in the $x y$ plane, $\oint_{\square} \vec{E} \cdot d \vec{\ell}$, is the induced voltage, or EMF. What current flows in the wire square?

$$
\begin{equation*}
\oint \vec{E} \cdot d \vec{\ell}=\int \vec{\nabla} \times \vec{E} \cdot d \vec{a}=-\alpha a^{2} \tag{24}
\end{equation*}
$$

Ohm's law says $I=V / R=-\alpha a^{2} /(4 R)$ (since segment resistances add in series), so $I=-\alpha a^{2} /(4 R)$.
5. (a)-(b) Calculate the arc length $d s^{2}$ and scale factors h_{i} for the cylindrical coordinate system ρ, ϑ, z.

$$
\begin{align*}
x & =r \cos \vartheta, y=r \sin \vartheta, z=z \tag{25}\\
d x & =\frac{\partial x}{\partial r} d r+\frac{\partial x}{\partial \vartheta} d \vartheta+\frac{\partial x}{\partial z} d z=\cos \vartheta d r-r \sin \vartheta d \vartheta \tag{26}\\
d y & =\sin \vartheta d r+r \cos \vartheta d \vartheta \tag{27}\\
d z & =d z \tag{28}\\
d s^{2} & =d x^{2}+d y^{2}+d z^{2}=d r^{2}+r^{2} d \vartheta^{2}+d z^{2} . \tag{29}\\
h_{r} & =1, h_{\vartheta}=r, h_{z}=1, \tag{30}\\
\vec{\nabla} \psi & =\sum \hat{q}_{i} \frac{1}{h_{i}} \frac{\partial \psi}{\partial q_{i}}=\hat{r} \frac{\partial \psi}{\partial r}+\frac{\hat{\vartheta}}{r} \frac{\partial \psi}{\partial \vartheta}+\hat{z} \frac{\partial \psi}{\partial z} . \tag{31}
\end{align*}
$$

(c)Write down an expression in terms of the unit vectors $\hat{\rho}, \hat{\vartheta}$, and \hat{z}, for the unit vector normal to the surface of a cone of height h and base radius r.

FIG. 1: cross section of cone.
Components of normal unit vector are shown, $\vartheta=\tan ^{-1} r / h$, so $\hat{n}=\cos \vartheta \hat{\rho}+$ $\sin \vartheta \hat{z}$.
(d) Find expressions for $\hat{\rho}, \hat{\vartheta}$, and \hat{z} in terms of \hat{i}, \hat{j}, and \hat{k}.

$$
\begin{align*}
d \vec{s} & =d x \hat{i}+d y \hat{j}+d z \hat{k} \tag{32}\\
& =d \rho \hat{\rho}+\rho d \vartheta \hat{\vartheta}+d z \hat{z} \tag{33}
\end{align*}
$$

Now we calculate $d x=\frac{\partial x}{\partial \rho} d \rho+\frac{\partial x}{\partial \vartheta} d \vartheta+\frac{\partial x}{\partial z} d z$, etc., and equate coefficients of $d \rho$, etc. to find

$$
\begin{array}{r}
\hat{\rho}=\hat{i} \cos \vartheta+\hat{j} \sin \vartheta \\
\hat{\vartheta}=-\hat{i} \sin \vartheta+\hat{j} \cos \vartheta \\
\hat{z}=\hat{k} \tag{34}
\end{array}
$$

6. A vector field has the form

$$
\begin{equation*}
\vec{A}(x, y, z)=(x+\alpha y, y+\beta x, z) \tag{35}
\end{equation*}
$$

(a) Determine α and β such that $\nabla \times \vec{A}=0$.

$$
\begin{aligned}
\vec{\nabla} \times \vec{A} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x+\alpha y & y+\beta x & z
\end{array}\right| \\
& =\hat{k}(\beta-\alpha)=0,
\end{aligned}
$$

so $\alpha=\beta$ works $\forall \alpha$.
(b) Calculate the corresponding scalar potential Φ. Be sure to clearly specify all unknown constants.
Using definition $\vec{A}=-\vec{\nabla} \Phi$, we have

$$
\begin{aligned}
\partial_{x} \Phi & =-x-\alpha y \\
\partial_{y} \Phi & =-y-\alpha x \\
\partial_{z} \Phi & =-z
\end{aligned}
$$

First condition $\Rightarrow \Phi=-x^{2} / 2-x y \alpha+c(y, z)$, second one $\Rightarrow \partial_{y} c(y, z)=$ $-y \Rightarrow c(y, z)=-y^{2}+c(z)$, third one $\Rightarrow \partial_{z} c(z)=-z \Rightarrow c(z)=-z^{2} / 2+c$. So

$$
\begin{equation*}
\Phi=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)-\alpha x y+c \tag{36}
\end{equation*}
$$

(c) Sketch the vector field \vec{A} in the plane $z=0$ for $\alpha=1$.

FIG. 2: Plot with $\alpha=1$ with x, y running from -1 to 1 .
(d) Calculate the ratio of the line integrals

$$
\begin{equation*}
\frac{\int_{s_{1}} \vec{A} \cdot d \vec{r}}{\int_{s_{2}} \vec{A} \cdot d \vec{r}} \tag{37}
\end{equation*}
$$

where s_{1} is the path along the diagonal between $a=(0,0,0)$ and $b=(1,1,1)$, and s_{2} is the path $a \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow b$.

Without doing any calculations, we know the ratio is 1 , since the field is conservative $(\nabla \times \vec{v}=0)$, so the line integral is independent of the path taken.

