PHZ3113- to Theoretical Physics

Fall 2008

Test $2-55$ minutes

Oct. 29, 2008

Solutions

Useful formulae:

$$
\begin{gather*}
\vec{\nabla} \psi=\frac{\partial \psi}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \hat{\phi} . \tag{1}\\
\vec{\nabla} \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \tag{2}\\
\hat{i}=\sin \theta \cos \phi \hat{r}+\cos \theta \cos \phi \hat{\theta}-\sin \phi \hat{\phi} \quad x=r \sin \theta \cos \phi \\
\hat{j}=\sin \theta \sin \phi \hat{r}+\cos \theta \sin \phi \hat{\theta}+\cos \phi \hat{\phi} \quad y=r \sin \theta \sin \phi \\
\hat{k}=\cos \theta \hat{r}-\sin \theta \hat{\theta} \tag{3}\\
\vec{\nabla}\left(\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right)=-\vec{\nabla}^{\prime}\left(\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right)=-\frac{z \cos \theta .}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}}, \tag{4}
\end{gather*}
$$

where

$$
\begin{align*}
& \widehat{\vec{r}-\vec{r}^{\prime}}=\frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} . \tag{5}\\
& \vec{\nabla} \psi=\sum_{i} \hat{q}_{i} \frac{1}{h_{i}} \frac{\partial \psi}{\partial q_{i}} . \tag{6}
\end{align*}
$$

1. Consider a vector field $\vec{v}=2 x \hat{x}-z \hat{y}+y \hat{z}$. Verify Stokes' theorem using the circle of radius a in the xy plane, bounding the surface A of the hemisphere above the (x, y) plane given by $x^{2}+y^{2}+z^{2}=a^{2}$.
(a) (5 pts) Calculate $\int_{A} \vec{\nabla} \times \vec{v} \cdot d \vec{a}$

$$
\begin{align*}
\vec{\nabla} \times \vec{v} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x & -z & y
\end{array}\right|=2 \hat{i} \tag{7}\\
& =2(\sin \theta \cos \phi \hat{r}+\cos \theta \cos \phi \hat{\theta}-\sin \phi \hat{\phi}) \tag{8}
\end{align*}
$$

where in the last step I expressed the answer in spherical coordinates because we need the integral over a hemisphere, which has normal \hat{r}. The magnitude of the area element on the surface is $d a=a^{2} \sin \theta d \theta d \phi$. Therefore

$$
\begin{equation*}
\vec{\nabla} \times \vec{v} \cdot d \vec{a}=2 \sin \theta \cos \phi d a=2 a^{2} \sin ^{2} \theta \cos \phi d \theta d \phi, \tag{9}
\end{equation*}
$$

and the integral is

$$
\begin{equation*}
\int \vec{\nabla} \times \vec{v} \cdot d \vec{a}=\int_{0}^{\pi / 2} a^{2} \sin ^{2} \theta d \theta \int_{0}^{2 \pi} d \phi \cos \phi=0 \tag{10}
\end{equation*}
$$

because the $\cos \phi$ is integrated over a period.
(b) (5 pts) Calculate $\oint_{\partial A} \vec{v} \cdot d \vec{r}$.

Method 1): For the circular path in the $x y$ plane, $d \vec{r}=a d \phi \hat{\phi}$, so we need to express \vec{v} in terms of spherical coordinates:

$$
\begin{align*}
\vec{v}= & (2 a \sin \theta \cos \phi)(\sin \theta \cos \phi \hat{r}+\cos \theta \cos \phi \hat{\theta}-\sin \phi \hat{\phi}) \\
& -a \cos \theta(\sin \theta \sin \phi \hat{r}+\cos \theta \sin \phi \hat{\theta}+\cos \phi \hat{\phi}) \\
& +a \sin \theta \sin \phi(\cos \theta \hat{r}-\sin \theta \hat{\theta}) . \tag{11}
\end{align*}
$$

For the circle in the $x y$ plane, $\theta=\pi / 2$ is fixed. The $\hat{\phi}$ component of \vec{v} is then $-2 a \cos \phi \sin \phi-0+0=-2 a \cos \phi \sin \phi$. So

$$
\begin{equation*}
\oint_{\partial A} \vec{v} \cdot d \vec{r}=\int_{0}^{2 \pi} a d \phi(-2 a \cos \phi \sin \phi)=0 \tag{12}
\end{equation*}
$$

Method 2): in Cartesian coordinates, $\vec{v} \cdot d \vec{r}=2 x d x-z d y+y d z$. Over the circle $d z=0, z=0$, and $d x=d(a \cos \phi)=-a \sin \phi d \phi$. So again

$$
\begin{equation*}
\oint_{\partial A} \vec{v} \cdot d \vec{r}=\int_{0}^{2 \pi} a d \phi(-2 a \cos \phi \sin \phi)=0 \tag{13}
\end{equation*}
$$

2. Given the matrices

$$
A=\left[\begin{array}{cc}
1 & -1 \tag{14}\\
0 & i
\end{array}\right] \quad ; \quad B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], C=\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 0 \\
1 & 1 & -2
\end{array}\right]
$$

(a) (2 pts) calculate $[A, B]$

$$
[A, B] \equiv A B-B A=\left[\begin{array}{ll}
1 & 1-i \tag{15}\\
1-i & -1
\end{array}\right]
$$

(b) (2 pts) calculate $A^{\dagger} B A$

$$
\left(\begin{array}{ll}
0 & i \tag{16}\\
i & -2 i
\end{array}\right)
$$

(c) (3 pts) solve the equation $C \vec{r}=\vec{k}$, where $\vec{r}=(x, y, z)$ and $\vec{k}=(-2,1,0)$, for x, y, z by matrix methods.

$$
C^{-1}=\left[\begin{array}{lll}
\frac{2}{5} & 1 & \frac{1}{5} \tag{17}\\
0 & 1 & 0 \\
\frac{1}{5} & 1 & -\frac{2}{5}
\end{array}\right],
$$

so

$$
\left[\begin{array}{l}
x \tag{18}\\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
\frac{2}{5} & 1 & \frac{1}{5} \\
0 & 1 & 0 \\
\frac{1}{5} & 1 & -\frac{2}{5}
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5} \\
1 \\
\frac{3}{5}
\end{array}\right]
$$

(d) (3 pts) which of the matrices is orthogonal? Why?

$$
B^{T}=B^{-1} .
$$

3. (a) (5 pts) Give an example of a family of functions δ_{n} which satisfy the conditions for their limit as $n \rightarrow \infty$ to be the Dirac δ-function, and state what these conditions are. If you can't define the functions mathematically, sketch them.

We want functions normalized to 1 whose width gets narrower as $n \rightarrow \infty$. We did a couple of examples in class, and there are many of them, but the simplest is the sequence of "step" or "window" functions:

$$
\delta_{n}(x)=\left\{\begin{array}{l}
0 \tag{19}\\
|x|>\frac{1}{2 n} \\
n|x|<\frac{1}{2 n}
\end{array}\right.
$$

(b) (5 pts) Evaluate $\int_{0}^{\infty} \delta\left(x^{2}-4\right) e^{x} d x$

$$
\begin{equation*}
\delta\left(x^{2}-4\right)=\frac{1}{|2 x|}_{x=2} \delta(x-2)+\frac{1}{|2 x|}_{x=-2} \delta(x+2) \tag{20}
\end{equation*}
$$

but only the 1st root is contained in the integration range, so

$$
\begin{equation*}
\int_{0}^{\infty} \delta\left(x^{2}-4\right) e^{x} d x=\frac{1}{4} \int_{0}^{\infty} \delta(x-2) e^{x} d x=e^{2} / 4 \tag{21}
\end{equation*}
$$

FIG. 1: Family $\delta_{n}(x)$.
4. Consider the transformations from coordinates (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ and from $\left(x^{\prime \prime}, y^{\prime \prime}\right)$ to $\left(x^{\prime}, y^{\prime}\right)$ given by

$$
\begin{align*}
& x^{\prime}=(\sqrt{3} x+y) / 2 ; \quad y^{\prime}=(\sqrt{3} y-x) / 2 ; \\
& x^{\prime}=\left(x^{\prime \prime}+y^{\prime \prime}\right) / \sqrt{2} ; \quad y^{\prime}=\left(y^{\prime \prime}-x^{\prime \prime}\right) / \sqrt{2} \tag{22}
\end{align*}
$$

Find the transformation from (x, y) to $\left(x^{\prime \prime}, y^{\prime \prime}\right)$. [Hint: write the transformation matrices carefully and make sure they correspond to the given equations. They must all be orthogonal matrices.]

$$
\begin{align*}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=} & {\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] ;\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime}
\end{array}\right] } \\
\Rightarrow & {\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{-1}\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
\frac{1+\sqrt{3}}{2 \sqrt{2}} & \frac{1-\sqrt{3}}{2 \sqrt{2}} \\
\frac{-1+\sqrt{3}}{2 \sqrt{2}} & \frac{1+\sqrt{3}}{2 \sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \tag{23}
\end{align*}
$$

5. (a) (5 pts) Calculate the arc length in the plane $d s^{2}$ for the coordinate system, u, v such that

$$
\begin{equation*}
x=u(1-v) ; \quad y=u \sqrt{2 v-v^{2}} \tag{24}
\end{equation*}
$$

$$
\begin{align*}
d s^{2} & =d x^{2}+d y^{2}=\left(\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v\right)^{2}+\left(\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v\right)^{2} \\
& =((1-v) d u-u d v)^{2}+\left(\left(\sqrt{2 v-v^{2}}\right) d u+\frac{u(1-v)}{\sqrt{2 v-v^{2}}} d v\right)^{2} \\
& ==d u^{2}+d v^{2}\left(\frac{u^{2}}{v(2-v)}\right) \equiv h_{u}^{2} d u^{2}+h_{v}^{2} d v^{2} \tag{25}
\end{align*}
$$

(b) (5 pts) Determine the scale factors h_{u} and h_{v}, and use them to give an expression for the gradient of a scalar field ψ in these coordinates.

$$
\begin{equation*}
h_{u}=1 ; \quad h_{v}=u\left(2 v-v^{2}\right)^{-1 / 2} \tag{26}
\end{equation*}
$$

so

$$
\begin{equation*}
\vec{\nabla} \psi=\hat{u} \frac{\partial \psi}{\partial u}+\hat{v} \frac{\sqrt{2 v-v^{2}}}{u} \frac{\partial \psi}{\partial v} \tag{27}
\end{equation*}
$$

6. (a) (4 pts) Given an arbitrary charge distribution $\rho(\vec{r})$, the electrostatic potential Φ is

$$
\begin{equation*}
\Phi(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{\tau} \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \tau^{\prime} . \tag{28}
\end{equation*}
$$

Find the electrostatic field $\vec{E}=-\vec{\nabla} \Phi$.

$$
\begin{equation*}
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right) \widehat{\vec{r}-\vec{r}^{\prime}}}{\left(\vec{r}-\vec{r}^{\prime}\right)^{2}} \tag{29}
\end{equation*}
$$

(b) (3 pts) The charge density of a charge Q spread uniformly over a ring of radius R (centered at the origin, lying in the $x-y$ plane) can be expressed in terms of δ-functions in cylindrical coordinates, $\rho(\vec{r})=A \delta(r-R) \delta(z)$, where A is a constant. Find A.

Total charge must equal

$$
\begin{align*}
Q & =\int d \tau \rho(\vec{r})=\int_{0}^{\infty} r d r \int_{0}^{2 \pi} d \theta \int_{-\infty}^{\infty} d z A \delta(r-R) \delta(z) \\
& =R A \cdot 2 \pi \Rightarrow A=\frac{Q}{2 \pi R} \tag{30}
\end{align*}
$$

(c) (3 pts) Using your result from parts a) and b), evaluate the electric field for the ring of charge at a point \vec{r} on the z axis a distance R above the plane of the ring. [Hint. Think before you calculate: in which direction will \vec{E} point?]
\vec{E} must point in z direction by symmetry. Therefore we are only interested in the z component. For the geometry given $\vec{r}=R \hat{z}$, and $\vec{r}^{\prime}=R \hat{r}$ (cylindrical). Therefore

$$
\begin{align*}
\vec{E}(\vec{r}) & =\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right) \widehat{\vec{r}-\vec{r}^{\prime}}}{\left(\vec{r}-\vec{r}^{\prime}\right)^{2}}=\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right)\left(\vec{r}-\vec{r}^{\prime}\right)}{\left(\vec{r}-\vec{r}^{\prime}\right)^{3}} \\
& =\frac{A}{4 \pi \epsilon_{0}} \int_{0}^{\infty} r^{\prime} d r^{\prime} \int_{0}^{2 \pi} d \theta^{\prime} \int_{-\infty}^{\infty} d z^{\prime} \delta(r-R) \delta(z) \frac{R \hat{z}-R \hat{r}}{\left(R^{2}+R^{2}\right)^{3 / 2}} \tag{31}
\end{align*}
$$

where the denominator has the form shown because $\vec{r} \cdot \vec{r}^{\prime}=0$ and $|\vec{r}|=$ $|\vec{r}|=R$. The \hat{r} term will vanish due to the θ integration, so we keep just the z component as the hint suggests, and perform the integrals over the δ functions, as well as the θ integration, which is trivial:

$$
\begin{equation*}
\vec{E}(\vec{r}=R \hat{z})=\frac{A}{4 \pi \epsilon_{0} R} \hat{z}=\frac{Q}{8 \pi^{2} \epsilon_{0} R^{2}} \hat{z} \tag{32}
\end{equation*}
$$

