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Solutions

Useful formulae:

~∇ψ =
∂ψ

∂r
r̂ +

1

r

∂ψ

∂θ
θ̂ +

1

r sin θ

∂ψ

∂φ
φ̂. (1)

~∇ · ~A =
1

r2

∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ
(2)

î = sin θ cos φ r̂ + cos θ cos φ θ̂ − sin φ φ̂ x = r sin θ cos φ

ĵ = sin θ sin φ r̂ + cos θ sin φ θ̂ + cos φ φ̂ y = r sin θ sin φ

k̂ = cos θ r̂ − sin θ θ̂ z = r cos θ. (3)

~∇
(

1

|~r − ~r ′|
)

= −~∇′
(

1

|~r − ~r ′|
)

= − ~̂r − ~r ′

|~r − ~r ′|2 , (4)

where

~̂r − ~r ′ =
~r − ~r ′

|~r − ~r ′| . (5)

~∇ψ =
∑

i

q̂i
1

hi

∂ψ

∂qi

. (6)

1. Consider a vector field ~v = 2xx̂−zŷ+yẑ. Verify Stokes’ theorem using the circle
of radius a in the xy plane, bounding the surface A of the hemisphere above the
(x, y) plane given by x2 + y2 + z2 = a2.

(a) (5 pts) Calculate
∫

A
~∇× ~v · d~a

~∇× ~v =

∣∣∣∣∣∣∣∣∣

î ĵ k̂

∂x ∂y ∂z

2x −z y

∣∣∣∣∣∣∣∣∣
= 2̂i (7)

= 2(sin θ cos φ r̂ + cos θ cos φ θ̂ − sin φ φ̂), (8)



where in the last step I expressed the answer in spherical coordinates because
we need the integral over a hemisphere, which has normal r̂. The magnitude
of the area element on the surface is da = a2 sin θdθdφ. Therefore

~∇× ~v · d~a = 2 sin θ cos φ da = 2a2 sin2 θ cos φdθdφ, (9)

and the integral is

∫
~∇× ~v · d~a =

∫ π/2

0

a2 sin2 θdθ

∫ 2π

0

dφ cos φ = 0 (10)

because the cos φ is integrated over a period.

(b) (5 pts) Calculate
∮

∂A
~v · d~r.

Method 1): For the circular path in the xy plane, d~r = adφφ̂, so we need to
express ~v in terms of spherical coordinates:

~v = (2a sin θ cos φ)(sin θ cos φ r̂ + cos θ cos φ θ̂ − sin φ φ̂)

−a cos θ(sin θ sin φ r̂ + cos θ sin φ θ̂ + cos φ φ̂)

+a sin θ sin φ(cos θ r̂ − sin θ θ̂). (11)

For the circle in the xy plane, θ = π/2 is fixed. The φ̂ component of ~v is
then −2a cos φ sin φ− 0 + 0 = −2a cos φ sin φ. So

∮

∂A

~v · d~r =

∫ 2π

0

a dφ (−2a cos φ sin φ) = 0 (12)

Method 2): in Cartesian coordinates, ~v · d~r = 2xdx − zdy + ydz. Over the
circle dz = 0, z = 0, and dx = d(a cos φ) = −a sin φdφ. So again

∮

∂A

~v · d~r =

∫ 2π

0

a dφ (−2a cos φ sin φ) = 0 (13)

2. Given the matrices

A =


 1 −1

0 i


 ; B =


 0 1

−1 0


 , C =




2 −3 1

0 1 0

1 1 −2


 (14)

(a) (2 pts) calculate [A,B]

[A, B] ≡ AB −BA =


 1 1− i

1− i −1


 (15)



(b) (2 pts) calculate A†BA


 0 i

i −2i


 (16)

(c) (3 pts) solve the equation C~r = ~k, where ~r = (x, y, z) and ~k = (−2, 1, 0),
for x, y, z by matrix methods.

C−1 =




2
5

1 1
5

0 1 0

1
5

1 −2
5


 , (17)

so 


x

y

z


 =




2
5

1 1
5

0 1 0

1
5

1 −2
5







−2

1

0


 =




1
5

1

3
5


 (18)

(d) (3 pts) which of the matrices is orthogonal? Why?

BT = B−1.

3. (a) (5 pts) Give an example of a family of functions δn which satisfy the condi-
tions for their limit as n → ∞ to be the Dirac δ-function, and state what
these conditions are. If you can’t define the functions mathematically, sketch
them.

We want functions normalized to 1 whose width gets narrower as n → ∞.
We did a couple of examples in class, and there are many of them, but the
simplest is the sequence of “step” or “window” functions:

δn(x) =





0 |x| > 1
2n

n |x| < 1
2n

(19)

(b) (5 pts) Evaluate
∫∞

0
δ(x2 − 4)ex dx

δ(x2 − 4) =
1

|2x|x=2

δ(x− 2) +
1

|2x|x=−2

δ(x + 2), (20)

but only the 1st root is contained in the integration range, so
∫ ∞

0

δ(x2 − 4)ex dx =
1

4

∫ ∞

0

δ(x− 2)ex dx = e2/4 (21)



FIG. 1: Family δn(x).

4. Consider the transformations from coordinates (x, y) to (x′, y′) and from (x′′, y′′)
to (x′, y′) given by

x′ = (
√

3x + y)/2 ; y′ = (
√

3y − x)/2 ;

x′ = (x′′ + y′′)/
√

2 ; y′ = (y′′ − x′′)/
√

2 (22)

Find the transformation from (x, y) to (x′′, y′′). [Hint: write the transformation
matrices carefully and make sure they correspond to the given equations. They
must all be orthogonal matrices.]
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 =




√
3

2
1
2

−1
2

√
3

2





 x

y


 ;


 x′

y′


 =




1√
2

1√
2

− 1√
2

1√
2





 x′′

y′′




⇒

 x′′

y′′


 =




1√
2

1√
2

− 1√
2

1√
2



−1 


√

3
2

1
2

−1
2

√
3

2





 x

y




=




1√
2
− 1√

2

1√
2

1√
2







√
3

2
1
2

−1
2

√
3

2





 x

y


 =




1+
√

3
2
√

2
1−√3
2
√

2

−1+
√

3
2
√

2
1+
√

3
2
√

2





 x

y


 (23)

5. (a) (5 pts) Calculate the arc length in the plane ds2 for the coordinate system,
u, v such that

x = u(1− v) ; y = u
√

2v − v2 (24)

.

ds2 = dx2 + dy2 =

(
∂x

∂u
du +

∂x

∂v
dv

)2

+

(
∂y

∂u
du +

∂y

∂v
dv

)2

= ((1− v)du− u dv)2 +

(
(
√

2v − v2)du +
u(1− v)√
2v − v2

dv

)2

= = du2 + dv2

(
u2

v(2− v)

)
≡ h2

udu2 + h2
vdv2 (25)



(b) (5 pts) Determine the scale factors hu and hv, and use them to give an
expression for the gradient of a scalar field ψ in these coordinates.

hu = 1 ; hv = u(2v − v2)−1/2 (26)

so

~∇ψ = û
∂ψ

∂u
+ v̂

√
2v − v2

u

∂ψ

∂v
(27)

6. (a) (4 pts) Given an arbitrary charge distribution ρ(~r), the electrostatic poten-
tial Φ is

Φ(~r) =
1

4πε0

∫

τ

ρ(~r ′)
|~r − ~r ′|dτ ′. (28)

Find the electrostatic field ~E = −~∇Φ.

~E(~r) =
1

4πε0

∫
dτ ′

ρ(~r′)~̂r − ~r ′

(~r − ~r ′)2
(29)

(b) (3 pts) The charge density of a charge Q spread uniformly over a ring of
radius R (centered at the origin, lying in the x− y plane) can be expressed
in terms of δ-functions in cylindrical coordinates, ρ(~r) = Aδ(r − R)δ(z),
where A is a constant. Find A.

Total charge must equal

Q =

∫
dτρ(~r) =

∫ ∞

0

rdr

∫ 2π

0

dθ

∫ ∞

−∞
dz Aδ(r −R)δ(z)

= RA · 2π ⇒ A =
Q

2πR
(30)

(c) (3 pts) Using your result from parts a) and b), evaluate the electric field for
the ring of charge at a point ~r on the z axis a distance R above the plane
of the ring. [Hint. Think before you calculate: in which direction will ~E
point? ]

~E must point in z direction by symmetry. Therefore we are only interested in
the z component. For the geometry given ~r = Rẑ, and ~r′ = Rr̂ (cylindrical).
Therefore

~E(~r) =
1

4πε0

∫
dτ ′

ρ(~r′)~̂r − ~r ′

(~r − ~r ′)2
=

1

4πε0

∫
dτ ′

ρ(~r′)(~r − ~r ′)
(~r − ~r ′)3

=
A

4πε0

∫ ∞

0

r′dr′
∫ 2π

0

dθ′
∫ ∞

−∞
dz′δ(r −R)δ(z)

Rẑ −Rr̂

(R2 + R2)3/2
(31)



where the denominator has the form shown because ~r · ~r′ = 0 and |~r| =
|~r′| = R. The r̂ term will vanish due to the θ integration, so we keep just
the z component as the hint suggests, and perform the integrals over the δ
functions, as well as the θ integration, which is trivial:

~E(~r = Rẑ) =
A

4πε0R
ẑ =

Q

8π2ε0R2
ẑ (32)


