Fall 2007
Test $3-55$ minutes
Oct. 26, 2007

No other materials allowed. If you can't do one part of a problem, solve subsequent parts in terms of unknown answer-define clearly. Do 4 of 6 problems, clearly indicating which you want graded!. You may attempt the remaining two as extra credit as well. All regular parts are worth 10 pts., each extra credit 5 each, for maximum of 50 points.

Useful formulae:

$$
\begin{gather*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}  \tag{1}\\
\oint f(z) d z=0  \tag{2}\\
\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-a} d z=f(a)  \tag{3}\\
f^{n}(a)=\frac{n!}{2 \pi i} \oint \frac{f(z) d z}{(z-a)^{n+1}}  \tag{4}\\
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}  \tag{5}\\
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} ; \quad b_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}} \tag{6}
\end{gather*}
$$

1. Two blocks of mass $m$ are connected to springs. The equations of motion can be written as

$$
\begin{align*}
& m \ddot{x}_{1}=-k x_{1}+2 k\left(x_{2}-x_{1}\right)  \tag{7}\\
& m \ddot{x}_{2}=-k x_{2}-2 k\left(x_{2}-x_{1}\right) \tag{8}
\end{align*}
$$

(a) Write the two coupled equations as a matrix equation of the form $|\ddot{X}\rangle=A|X\rangle$, where $|X\rangle$ is a two-component column vector and $A$ is a $2 \times 2$ matrix.
(b) Find the eigenvalues and normalized eigenvectors of $A$.
(c) Draw a picture indicating the motion of the blocks represented by each of the eigenvectors.
2. Consider the $2 \times 2$ matrix $B$ with elements $B_{11}=B_{22}=0, B_{12}=1$ and $B_{21}=-1$.
(a) Show that $B$ rotates any two dimensional vector by $90^{\circ}$. (Hint: two vectors are at $90^{\circ}$ with respect to each other if the dot product vanishes.)
(b) Show that $e^{\theta B}=R$, where $R$ is the two dimensional rotation matrix $R=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. (Hint: note that $B^{2}=-I$, and that $\left.R=\cos \theta I+\sin \theta B\right)$.
3. If $z_{1}=\sqrt{2} e^{i \pi / 4}$ and $z_{2}=(3-i) e^{i \pi}$, evaluate
(a) $\operatorname{Re} z_{1} z_{2}$
(b) $\sqrt[3]{z_{1}+z_{2}}$ (give all roots!)
(c) $\left(z_{1}+z_{2}\right)^{1+i}$ (hint: use properties of $\ln$ )
4. (a) Find the analytic function $w(z)=u(x, y)+i v(x, y)$ if $v(x, y)=2 x y$.
(b) Show explicitly that the function $f(z)=|z|$ is not analytic at $z=0$ by calculating the derivative along 2 different paths.
5. Use contour integration to evaluate the integrals
(a)

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i x}}{i+x} d x \tag{9}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x \sin \pi x}{1+x^{2}} d x \tag{10}
\end{equation*}
$$

6. (a) Find the first two $a_{n}$ terms and first two $b_{n}$ terms of the Laurent series for $f(z)=(z+$ $2)^{-2} z^{-1}$ around $z=-2$.
(b) Evaluate the residues of $f(z)=(z+2)^{-2} z^{-1}$ at $z=-2$ and $z=0$.
