Phz3113 Fall '08 Test 3 solutions

1. Consider the matrices
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$.

(a) (3 pts) Specify whether A and B are i) Hermitian (or antiHermitian); ii) orthogonal; iii) (symmetric (or antisymmetric).

Hermitian means $M=M^{\dagger}$. $A^{\dagger}=A^{T}=-A$, so A is anti-Hermitian. Orthogonal means $M^{-1}=M^{T}:A$ yes, B yes. A is anti-ymmetric, i.e. it obeys $M_{ij}=-M_{ji}$. Note B can't be anti-ymmetric or anti-Hermitian since its diagonal elements are not zero.

(b) (3 pts.) Find $C = A + BB^T$.

$$BB^{T} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (1)

SO

$$A + BB^{T} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 (2)

(c) (4 pts.) Find eigenvalues and normalized eigenvectors of C. Verify that the eigenvectors are mutually orthogonal.

$$\begin{vmatrix} 1 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = 0 \implies (1 - \lambda)^2 + 1 = 0 \implies \lambda = 1 \pm i$$
 (3)

so for eigenvalues $\lambda = 1 \pm i$ we have

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (1 \pm i) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \tag{4}$$

SO

$$v_1 + v_2 = (1 \pm i)v_1 -v_1 + v_2 = (1 \pm i)v_2 \Rightarrow v_2 = \pm iv_1,$$
 (5)

so eigenvectors are e.g. $\begin{bmatrix} v_1 \\ iv_1 \end{bmatrix}$ and $\begin{bmatrix} v_1 \\ -iv_1 \end{bmatrix}$, to normalize divide by magnitude to find $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ i \end{bmatrix}$ and $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ -i \end{bmatrix}$. To verify orthogonality remember to complex conjugate the bra vector:

$$\langle 1 - i | 1 + i \rangle = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} = 0 \quad OK$$
 (7)

- 2. Evaluate the following integrals by contour integration:
 - (a) (5 pts.)

$$\int_0^{2\pi} d\theta \, \frac{\sin \theta}{5 + 3\sin \theta} \tag{8}$$

$$I = \operatorname{Im} \int_0^{2\pi} \frac{e^{i\theta} d\theta}{5 + 3\sin\theta} \equiv \operatorname{Im} I' \tag{9}$$

Using $z = e^{i\theta}$, $dz = izd\theta$ we find

$$I' = \oint_{C:|z|=1} \frac{dz}{iz} \frac{z}{5 + \frac{3}{2i}(z - 1/z)} = \oint \frac{2zdz}{10iz + 3z^2 - 3}$$
(10)
$$= \frac{2}{3} \oint \frac{zdz}{(z + i/3)(z + 3i)} = \frac{2}{3} 2\pi i \operatorname{Res}(z = -i/3) = \frac{-i\pi}{6}$$

$$\Rightarrow I = -\frac{\pi}{6}$$
(11)

FIG. 1: Prob. 2a

$$\int_0^\infty dx \frac{\cos 2x}{9x^2 + 4} \tag{12}$$

FIG. 2: Prob. 2b

$$I = \int_0^\infty dx \frac{\cos 2x}{9x^2 + 4} = \frac{1}{2} \operatorname{Re} \int_{-\infty}^\infty \frac{e^{2ix} dx}{9x^2 + 4} \equiv \frac{1}{2} \operatorname{Re} I_1$$
 (13)

Consider

$$I' = \oint_{C=C_1+C_2} \frac{e^{i2z}dz}{9z^2+4} = \oint_C \frac{e^{i2z}dz}{9(z+i\frac{2}{3})(z-i\frac{2}{3})}$$
 (14)

Only 2i/3 is enclosed, so

$$I' = \frac{2\pi i}{9}R(2i/3) = \frac{2\pi i}{9}\frac{e^{2i(2i/3)}}{(4i/3)} = \frac{\pi}{6}e^{-4/3}.$$
 (15)

Since $I = \frac{1}{2} \operatorname{Re} I'$, we have

$$I = \frac{\pi}{12}e^{-4/3}. (16)$$

3. Given that w(z) = u(x, y) + iv(x, y) is analytic in some region, and that $v(x, y) = e^{-y} \sin x$, find w(z).

$$v = e^{-y} \sin x$$
, $\frac{\partial v}{\partial x} = e^{-y} \cos x = -\frac{\partial u}{\partial y}$ \Rightarrow $u = \cos x e^{-y} + g(x)$ (17)

$$\frac{\partial v}{\partial y} = -e^{-y}\sin x = \frac{\partial u}{\partial x} \quad \Rightarrow \quad u = \cos x e^{-y} + h(y), \tag{18}$$

so only possibility is $u = \cos xe^{-y} + C$, where C is independent of x or y. Dropping the C,

$$w(z) = \cos x e^{-y} + i \sin x e^{-y} = e^{iz}$$
(19)

- 4. Given $z_1 = 2e^{i\pi/6}$, and $z_2 = 1 + \sqrt{3}i$, evaluate
 - (a) $\left| \frac{z_1}{z_2} \right|$
 - (b) $(z_1 + z_2)^{1/3}$

$$z_1 = 2e^{i\pi/6} = \sqrt{3} + i$$
, $z_2 = 1 + \sqrt{3}i$. The sum is $z_1 + z_2 = (\sqrt{3} + 1)(1 + i) = \sqrt{2}(\sqrt{3} + 1)e^{\frac{i\pi}{4}}$. So a) $\left|\frac{z_1}{z_2}\right| = 1$, and b) $(z_1 + z_2)^{1/3} = [\sqrt{2}(\sqrt{3} + 1)]^{1/3}e^{i(\frac{\pi}{4} + 2m\pi)/3}$.

(c) Find the Fourier transform of a Lorentzian (Γ is real and > 0):

$$f(x) = \frac{\Gamma/\pi}{\mathbf{x}^2 + \Gamma^2} \tag{20}$$

$$a(k) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} \frac{\Gamma/\pi}{x^2 + \Gamma^2}$$
$$= \frac{1}{\sqrt{2\pi}} \int_C dz \frac{e^{-ikz}}{z^2 + \Gamma^2}, \tag{21}$$

where the contour C is along the real z axis and then follows the arc at infinity in the lower half plane for k>0. This is because e^{-ikz} is exponentially damped with a factor e^{-ky} in the lower half plane only. Therefore we pick up the pole at $z=-i\Gamma$, get a minus sign from reversing the sign of the contour, and find

$$a(k) = -\frac{1}{\sqrt{2\pi}} 2\pi i R(-i\Gamma)$$

$$= -\sqrt{2\pi} i \frac{e^{-k\Gamma}}{-2i\Gamma} = \sqrt{\frac{\pi}{2}} \frac{e^{-k\Gamma}}{\Gamma}, \qquad (22)$$

where we assumed k > 0. For k < 0 the contour must be closed in the upper half plane, leading to a result $\propto e^{k\Gamma}/\Gamma$. So all together we have

$$a(k) = \sqrt{\frac{\pi}{2}} \frac{e^{-|k|\Gamma}}{\Gamma} \tag{23}$$

5. A mechanical system is described by the set of equations

$$\ddot{x}_1 = x_2 \; ; \quad \ddot{x}_2 = x_1 \tag{24}$$

where the dot indicates differentiation with respect to time.

(a) Find the normal modes (normalized eigenvectors) of the system.

Eqn. of motion is

$$\begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{25}$$

so determinant of characteristic matrix is

$$\begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = 0 \quad \Rightarrow \quad \lambda = \pm 1 \tag{26}$$

$$\lambda = +1 \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = +1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \Rightarrow \quad v_1 = v_2$$

$$\lambda = -1 \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = -1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \Rightarrow \quad v_1 = -v_2. \quad (27)$$

So normalized eigenvectors are

$$|1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \quad ; \quad |-1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$
 (28)

(b) Expand the vector $|V\rangle = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ in terms of these eigenvectors.

$$|v\rangle = \begin{bmatrix} 2\\5 \end{bmatrix} = c_1|1\rangle + c_2|-1\rangle \tag{29}$$

$$c_1 = \langle 1|v\rangle = \frac{7}{\sqrt{2}} \; ; \quad c_2 = \langle -1|v\rangle = \frac{-3}{\sqrt{2}}$$
 (30)

So

$$|v\rangle = \frac{1}{\sqrt{2}}(7|1\rangle - 3|-1\rangle). \tag{31}$$

6. (Extra credit, 10 pts.) Consider the Pauli matrix $\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$. Show that $e^{ia\sigma_y} = (\cos a)I + i(\sin a)\sigma_y$, where a is a constant and I is the 2×2 unit matrix.

$$e^{ia\sigma_{y}} = 1 + a\sigma_{y} + \frac{(ia\sigma_{y})^{2}}{2!} + \frac{(ia\sigma_{y})^{3}}{3!} + \dots$$

$$= \left(1 - \frac{a^{2}\sigma_{y}^{2}}{2!} + \frac{a^{4}\sigma_{y}^{4}}{4!} + \dots\right) + i\left(a\sigma_{y} - \frac{a^{3}\sigma_{y}^{3}}{3!} + \dots\right)$$

$$= \left(1 - \frac{a^{2}}{2!} + \frac{a^{4}}{4!} + \dots\right) + i\sigma_{y}\left(a - \frac{a^{3}}{3!} + \dots\right)$$

$$= \cos a \cdot I + i\sin a \sigma_{y}$$
(32)