Phz3113 Fall '08
Test 3 solutions

1. Consider the matrices A = and B =
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(3 pts) Specify whether A and B are i) Hermitian (or antiHermitian); ii)
orthogonal; iii) (symmetric (or antisymmetric).

Hermitian means M = M. A" = AT = —A so A is antiHermitian.
Orthogonal means M~' = M7 : A yes, B yes. A is antisymmetric, i.e. it
obeys M;; = —Mj;. Note B can’t be antisymmetric or antiHermitian since
its diagonal elements are not zero.

(3 pts.) Find C = A+ BBT.
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(4 pts.) Find eigenvalues and normalized eigenvectors of C. Verify that
the eigenvectors are mutually orthogonal.
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so for eigenvalues A = 1 4+ ¢ we have
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to complex conjugate the bra vector:
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2. Evaluate the following integrals by contour integration:
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Using z = €%, dz = izdf we find
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FIG. 1: Prob. 2a



(b) (3 pts.)
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. Given that w(z) = u(x, y)+iv(z,y) is analytic in some region, and that v(x,y) =

e Ysinz, find w(z).
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u=cosze Y+ g(x)
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so only possibility is © = cosze™ + C, where C' is independent of x or y.
Dropping the C,

w(z) = cosze ¥ +isinwe ¥ = ¢ (19)

4. Given z = 2¢"/5 and z, = 1 + v/3i, evaluate
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2 = 2e"/0 = \/3414, 2o = 1+ V/3i. Thesumlszl—l—z2:(\/§+1)(1—l—
z) = V2(V3 + 1)eT. So a) = 1, and b) (21 + %)% = [V2(V3 +

1)]1/36i(%+2m7r)/3'
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(c) Find the Fourier transform of a Lorentzian (I" is real and > 0):
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where the contour C' is along the real z axis and then follows the arc
at infinity in the lower half plane for k > 0. This is because e~ is
exponentially damped with a factor e * in the lower half plane only.
Therefore we pick up the pole at z = —il", get a minus sign from reversing

the sign of the contour, and find
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where we assumed k > 0. For k£ < 0 the contour must be closed in the
upper half plane, leading to a result o e /T". So all together we have
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5. A mechanical system is described by the set of equations

3-51 = T2 Zi’g =T (24)
where the dot indicates differentiation with respect to time.
(a) Find the normal modes (normalized eigenvectors) of the system.
Eqn. of motion is
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So normalized eigenvectors are
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(b) Expand the vector |[V) = in terms of these eigenvectors.
v) = =all) + el -1) (29)
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6. (Extra credit, 10 pts.) Consider the Pauli matrix o, = . Show that

1 0
e = (cosa)l +i(sina)o,, where a is a constant and [ is the 2x2 unit matrix.

(iaoy)? N (iaoy)?

e = Thaoy 31

= cosa- I +isinao, (32)




