PHY3113-Introduction to Theoretical Physics

Fall 2007

Test 1 - 55 minutes

Sept. 28, 2007

No other materials allowed. If you can't do one part of a problem, solve subsequent parts in terms of unknown answer-define clearly. Do 5 of first 6 problems, clearly indicating which you want graded! You may attempt extra credit problems as well. All regular parts are worth 10 pts., extra credit 5 each, for maximum of 60 points. Good luck!

1. Expand $x /\left(e^{x}-1\right)$ to order x^{2} for $x \ll 1$.
2. The equation of state for a van der Waals gas is

$$
\begin{equation*}
\left(p+\frac{a}{V^{2}}\right)(V-b)=R T \tag{1}
\end{equation*}
$$

where a, b and R are constants. Consider two experiments on such a gas confined to a cylinder where you may control p, V and/or T.
(a) Hold T constant and find $d V / d p$.
(b) Hold p constant and find $d V / d T$.
3. Change variables $x=u+v, y=u-v$, to rewrite the differential equation

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial^{2} w}{\partial y^{2}}=1 \tag{2}
\end{equation*}
$$

in terms of u and v (no need to solve the equation).
4. Evaluate the integral

$$
\begin{equation*}
\int_{y=0}^{\pi} d y \int_{x=y}^{\pi} d x \frac{\sin x}{x} . \tag{3}
\end{equation*}
$$

5. If $\vec{\nabla} \cdot \vec{A}=0$ and $\vec{\nabla} \cdot \vec{B}=0$, show that

$$
\begin{equation*}
\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-(\vec{A} \cdot \vec{\nabla}) \vec{B} \tag{4}
\end{equation*}
$$

[Hint: $\left.\epsilon_{i j k} \epsilon_{i l m}=\delta_{j \ell} \delta_{k m}-\delta_{j m} \delta_{k \ell}\right]$
6. Look for a minimum of the function $1 / x+4 / y+9 / z$ for $x, y, z>0$ and $x+y+z=$ 12 by the method of Lagrange multipliers.
7. (Extra credit.) Consider the vector $\vec{V}=4 y \hat{i}+x \hat{j}+2 z \hat{k}$ and the scalar field $\psi(x, y, z)=1 / \sqrt{x^{2}+y^{2}+z^{2}}$.
(a) show $\vec{\nabla} \times \vec{V}=-3 \hat{k}$
(b) evaluate $\int \vec{V} \cdot d \vec{r}$ from the origin $(0,0,0)$ to $(1,1,1)$ along the line $x=t, y=t^{2}$, $z=t^{3}$.
(c) evaluate $\vec{\nabla} \psi$ and $\vec{\nabla} \times \vec{\nabla} \psi$).
8. (Extra credit.) Calculate the radii of convergence of the following series:
(a)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(n x)^{n}}{n!} \tag{5}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}+1} \tag{6}
\end{equation*}
$$

