Test 1 solutions
Phz 3113 Fall 2007

1. Expand z/(e® — 1) to order 2 for z < 1.
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To order 2,
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which is an alternating geometric series in (z/2! 4+ 22?/3!), so

=1—(z/2'+ 2%/3)) + (/2! + 22 /312 ~ 1 — /2 + 2*/12

2. The equation of state for a van der Waals gas is

(p—l—%) (V —b) = R,

(4)

where a,b and R are constants. Consider two experiments on such a gas confined to a cylinder

where you may control p, V and/or T

(a) Hold T constant and find dV//dp.
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(b) Hold p constant and find dV//dT.

Similarly if dp = 0,
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3. Change variables x = u + v, y = u — v, to rewrite the differential equation
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in terms of u and v (no need to solve the equation).

Sketch solution. First invert u = (z 4+ y)/2, v = (z — y)/2. calculate partial derivatives:
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The 2nd partials are e.g.
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agld siinlarly for y except the coefficient of the mixed partial derivative is negative. Constructing
G — 5% = 1, we find
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. Evaluate the integral
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Reverse order of integrations:

/ dx mx/ dy—/ drsinx = —cosz|f = 2.
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5. Ifﬁ-g:Oandﬁ-ézO, show that
Vx(AxB)=(B-V)A—(A-V)B. (15)
[Hint: Eijkeiﬁm = (5]-@5;% — 5jm5k€]




[V X (/Y X é)]l = Gijij(g X é)k = Ez‘jkekmnAmBn = EkijekmnvjAmBn
- (5lm5]n - 5m6Jm)V]AmBn - V]A,LBJ - VJAJB,L
= A(V-B)+ (B-V)A4; — B{(V-A) —(A-V)B; = (B-V)4, — (A-V)B

where in the last step I used the info given that both vectors had zero divergence, and the
product rule of differentiation.

. Look for a minimum of the function 1/x +4/y +9/z for z,y,z >0 and x + y + z = 12.

Lagrange multipliers:

F=1/c+4/y+9/2+ XNz +y+2z—12), (16)
SO minimize:
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Together with the constraint equation x +y+ 2z = 12 this system can be easily solved by noting
that the solutions should be positive. Therefore by eliminating A we find x = y/2 = z/3. The
constraint equation is then z +2x 4+ 3x =6, so x = 2,y = 4, z = 6 is a solution. Function takes
minimum value of 3 here

. (Extra credit) Consider the vector V = 4dyi + 2j + 22k and the scalar field U(x,y,2) =
1/y/x? +y? + 22.

(a) show V x V = —3k

eijkvjvk For 7 = 1, €1jkvj'1)k = VQ’Ug - Vg?)g = 0, for i = 2, Egjkvj'vk = VSUI - Vﬂ)g = 07
for i = 3, €35,V v = Vivg — Vouy =1 —4 = —3. So answer is —32.

(b) evaluate [ V - dF from the origin (0,0,0) to (1,1,1) along the line z = ¢, y = {2, z = t3.

Since curl ¢ # 0, integral depends on path in general.
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(c) evaluate Vo) and V x Vi
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which vanishes by equality of mixed partial derivatives. You can also do this problem with
€1 notation if you like.

8. (Extra credit.) Calculate the radii of convergence of the following series:
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