Test 1 solutions

Phz 3113 Fall 2007

1. Expand $x /\left(e^{x}-1\right)$ to order x^{2} for $x \ll 1$.

$$
\begin{equation*}
\frac{x}{1+x+x^{2} / 2!+x^{3} / 3!+\cdots-1} \tag{1}
\end{equation*}
$$

To order x^{2},

$$
\begin{equation*}
\frac{1}{\left(1+x / 2!+x^{2} / 3!+\ldots\right)} \simeq \frac{1}{1+\left(x / 2!+x^{2} / 3!\right)}, \tag{2}
\end{equation*}
$$

which is an alternating geometric series in $\left(x / 2!+x^{2} / 3!\right)$, so

$$
\begin{equation*}
=1-\left(x / 2!+x^{2} / 3!\right)+\left(x / 2!+x^{2} / 3!\right)^{2} \simeq 1-x / 2+x^{2} / 12 \tag{3}
\end{equation*}
$$

2. The equation of state for a van der Waals gas is

$$
\begin{equation*}
\left(p+\frac{a}{V^{2}}\right)(V-b)=R T \tag{4}
\end{equation*}
$$

where a, b and R are constants. Consider two experiments on such a gas confined to a cylinder where you may control p, V and/or T.
(a) Hold T constant and find $d V / d p$.

$$
\begin{equation*}
d\left[\left(p+\frac{a}{V^{2}}\right)(V-b)\right]=d(R T)=0 \tag{5}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{d V}{d p}=\frac{b-V}{\frac{a}{V^{2}}+\frac{2(b-V) a}{V^{3}}+p}=\frac{(b-V) V^{3}}{p V^{3}-a V+2 a b} \tag{6}
\end{equation*}
$$

(b) Hold p constant and find $d V / d T$.

Similarly if $d p=0$,

$$
\begin{equation*}
\frac{d V}{d T}=\frac{R}{\frac{a}{V^{2}}+\frac{2(b-V) a}{V^{3}}+p}=\frac{R V^{3}}{p V^{3}-a V+2 a b} \tag{7}
\end{equation*}
$$

3. Change variables $x=u+v, y=u-v$, to rewrite the differential equation

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial^{2} w}{\partial y^{2}}=1 \tag{8}
\end{equation*}
$$

Sketch solution. First invert $u=(x+y) / 2, v=(x-y) / 2$. calculate partial derivatives:

$$
\begin{align*}
\frac{\partial w}{\partial x}= & \frac{\partial w}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial x}=\frac{1}{2}\left[\frac{\partial w}{\partial u}+\frac{\partial w}{\partial v}\right] \\
& \Rightarrow \frac{\partial}{\partial x}=\frac{1}{2}\left(\frac{\partial}{\partial u}+\frac{\partial}{\partial v}\right) \tag{9}
\end{align*}
$$

and similarly for y

$$
\begin{equation*}
\frac{\partial}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial u}-\frac{\partial}{\partial v}\right) \tag{10}
\end{equation*}
$$

The 2nd partials are e.g.

$$
\begin{align*}
\frac{\partial^{2} w}{\partial x^{2}} & =\frac{1}{4}\left(\frac{\partial}{\partial u}+\frac{\partial}{\partial v}\right)\left(\frac{\partial}{\partial u}+\frac{\partial}{\partial v}\right) w \\
& =\frac{1}{4}\left[\frac{\partial^{2} w}{\partial u^{2}}+\frac{\partial^{2} w}{\partial v^{2}}+2 \frac{\partial^{2} w}{\partial u \partial v}\right] \tag{11}
\end{align*}
$$

and similarly for y except the coefficient of the mixed partial derivative is negative. Constructing $\frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial^{2} w}{\partial y^{2}}=1$, we find

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial u \partial v}=1 \tag{12}
\end{equation*}
$$

4. Evaluate the integral

$$
\begin{equation*}
\int_{y=0}^{\pi} d y \int_{x=y}^{\pi} d x \frac{\sin x}{x} . \tag{13}
\end{equation*}
$$

Reverse order of integrations:

$$
\begin{equation*}
\int_{0}^{\pi} d x \frac{\sin x}{x} \int_{0}^{x} d y=\int_{0}^{\pi} d x \sin x=-\left.\cos x\right|_{0} ^{\pi}=2 \tag{14}
\end{equation*}
$$

5. If $\vec{\nabla} \cdot \vec{A}=0$ and $\vec{\nabla} \cdot \vec{B}=0$, show that

$$
\begin{equation*}
\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-(\vec{A} \cdot \vec{\nabla}) \vec{B} \tag{15}
\end{equation*}
$$

[Hint: $\left.\epsilon_{i j k} \epsilon_{i \ell m}=\delta_{j \ell} \delta_{k m}-\delta_{j m} \delta_{k \ell}\right]$

$$
\begin{aligned}
{[\vec{\nabla} \times(\vec{A} \times \vec{B})]_{i} } & =\epsilon_{i j k} \nabla_{j}(\vec{A} \times \vec{B})_{k}=\epsilon_{i j k} \epsilon_{k m n} A_{m} B_{n}=\epsilon_{k i j} \epsilon_{k m n} \nabla_{j} A_{m} B_{n} \\
& =\left(\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}\right) \nabla_{j} A_{m} B_{n}=\nabla_{j} A_{i} B_{j}-\nabla_{j} A_{j} B_{i} \\
& =A_{i}(\vec{\nabla} \cdot B)+(\vec{B} \cdot \vec{\nabla}) A_{i}-B_{i}(\vec{\nabla} \cdot \vec{A})-(\vec{A} \cdot \vec{\nabla}) B_{i}=(\vec{B} \cdot \vec{\nabla}) A_{i}-(\vec{A} \cdot \vec{\nabla}) B_{i}
\end{aligned}
$$

where in the last step I used the info given that both vectors had zero divergence, and the product rule of differentiation.
6. Look for a minimum of the function $1 / x+4 / y+9 / z$ for $x, y, z>0$ and $x+y+z=12$.

Lagrange multipliers:

$$
\begin{equation*}
F=1 / x+4 / y+9 / z+\lambda(x+y+z-12), \tag{16}
\end{equation*}
$$

so minimize:

$$
\begin{equation*}
\frac{\partial F}{\partial x}=-\frac{1}{x^{2}}+\lambda=0 \quad ; \quad \frac{\partial F}{\partial y}=-\frac{4}{y^{2}}+\lambda=0 \quad ; \quad \frac{\partial F}{\partial z}=-\frac{9}{z^{2}}+\lambda=0 . \tag{17}
\end{equation*}
$$

Together with the constraint equation $x+y+z=12$ this system can be easily solved by noting that the solutions should be positive. Therefore by eliminating λ we find $x=y / 2=z / 3$. The constraint equation is then $x+2 x+3 x=6$, so $x=2, y=4, z=6$ is a solution. Function takes minimum value of 3 here.
7. (Extra credit) Consider the vector $\vec{V}=4 y \hat{i}+x \hat{j}+2 z \hat{k}$ and the scalar field $\psi(x, y, z)=$ $1 / \sqrt{x^{2}+y^{2}+z^{2}}$.
(a) show $\vec{\nabla} \times \vec{V}=-3 \hat{k}$
$\epsilon_{i j k} \nabla_{j} v_{k}$ For $i=1, \epsilon_{1 j k} \nabla_{j} v_{k}=\nabla_{2} v_{3}-\nabla_{3} v_{2}=0 ;$ for $i=2, \epsilon_{2 j k} \nabla_{j} v_{k}=\nabla_{3} v_{1}-\nabla_{1} v_{3}=0 ;$ for $i=3, \epsilon_{3 j k} \nabla_{j} v_{k}=\nabla_{1} v_{2}-\nabla_{2} v_{1}=1-4=-3$. So answer is $-3 \hat{z}$.
(b) evaluate $\int \vec{V} \cdot d \vec{r}$ from the origin $(0,0,0)$ to $(1,1,1)$ along the line $x=t, y=t^{2}, z=t^{3}$.

Since curl $\vec{v} \neq 0$, integral depends on path in general.

$$
\begin{align*}
\iiint_{0,0,0}^{1,1,1}(4 y \hat{i}+x \hat{j}+2 z \hat{k}) \cdot(d x \hat{i}+d y \hat{j}+d z \hat{k}) & =\int_{0}^{1}\left(4 t^{2} d t+t \cdot 2 t d t+2 t^{3} \cdot 3 t^{2} d t\right) \\
& =6\left[\frac{1}{3} t^{3}+\frac{1}{6} t^{6}\right]_{0}^{1}=3 \tag{18}
\end{align*}
$$

(c) evaluate $\vec{\nabla} \psi$ and $\vec{\nabla} \times \vec{\nabla} \psi$.

$$
\begin{equation*}
\vec{\nabla} \psi=-(x, y, z) /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}=-\frac{\vec{r}}{r^{3}} \tag{19}
\end{equation*}
$$

and

$$
\vec{\nabla} \times \vec{\nabla} \psi=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \tag{20}\\
\partial_{x} & \partial_{y} & \partial_{z} \\
\partial_{x} \psi & \partial_{y} \psi & \partial_{z} \psi
\end{array}\right|,
$$

which vanishes by equality of mixed partial derivatives. You can also do this problem with $\epsilon_{i j k}$ notation if you like.
8. (Extra credit.) Calculate the radii of convergence of the following series:
(a)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(n x)^{n}}{n!} \tag{21}
\end{equation*}
$$

Use ratio test:

$$
\begin{align*}
\rho_{n} & =\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(n+1)^{n+1} x^{n+1}}{(n+1)!} \frac{n!}{n^{n} x^{n}}\right| \tag{22}\\
& =\frac{|x|(n+1)^{n}}{n^{n}}=|x|\left(1+\frac{1}{n}\right)^{n} \tag{23}\\
\rho & =\lim _{n \rightarrow \infty} \rho_{n}=|x| \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=|x| e \tag{24}
\end{align*}
$$

(b)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}+1} \tag{25}
\end{equation*}
$$

Use ratio test:

$$
\begin{align*}
\rho_{n} & =\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{x^{n+1}}{n^{2}+2 n+2} \frac{n^{2}+1}{x^{2}}\right|=|x| \frac{n^{2}+1}{n^{2}+2 n+2} \tag{26}\\
\rho & =\lim _{n \rightarrow \infty} \rho_{n}=|x|<1 \tag{27}
\end{align*}
$$

