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1 Introduction

1.1 Goals in this course

These are my hopes for the course. Let me know if you feel the course is not fulfilling them

for you. Be free with your criticism & comments! Thanks.

• Teach basics of collective phenomena in electron systems

• Make frequent reference to real experiment and data

• Use 2nd quantized notation without field-theoretical techniques

• Get all students reading basic CM journals

• Allow students to practice presenting a talk

• Allow students to bootstrap own research if possible

1.2 Statistical mechanics of free Fermi gas

1.2.1 T = 0 Fermi sea

Start with simple model of electrons in metal, neglecting e− − e− interactions. Hamiltonian

is

Ĥ = −
∑
j

ℏ2∇2
j

2m
, j = 1, . . . N particles (1)

Eigenstates of each −(ℏ2∇2/2m) are just plane waves eik·r labelled by k, with ki = 2πni/Li

in box with periodic B.C. Recall electrons are fermions, which means we can only put one in

each single-particle state. Including spin we can put two particles (υ ↓) in each k-state. At

zero temperature the ground state of N -electron system is then formed by adding particles

until we run out of electrons. Energy is εk = ℏ2k2/2m, so start with two in lowest state

k = 0, then add two to next states, with kx or ky or kz = 2π/L, etc. as shown. Energy

of highest particle called “Fermi energy" εF , magnitude of corresponding wave vector called

kF . Typical Fermi energy for metal εF ≃ 1eV ≃ 104K. At T = 0 only states with k < kF

occupied (Fermi “sea" or Fermi sphere), so we can write density of electrons as 2*# occupied

states/Volume (2 is for spin):

n =
2

L3

kF∑
k=0

≃ 2

∫
k<kF

d3k

(2π)3
=

1

π2

∫ kF

0

k2dk =
k3F
3π2

(2)

so

kF = (3π2n)1/3 or εF =
ℏ2(3π2n)2/3

2m
(3)
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in other words, nothing but the density of electrons controls the Fermi energy.

Figure 1: States of Fermi gas with parabolic spectrum, ε = k2/2m.

The total ground state energy of the Fermi gas must be of order εF , since there is no

other energy in the problem. If we simply add up the energies of all particles in states up to

Fermi level get

E

L3
=

1

π2

∫ kF

0

dk k2
(
ℏ2k2

2m

)
=

ℏ2k5F
10π2m

(4)

and the ground state energy per particle (N = nL3 is the total number) is

E

N
=

3

5
εF . (5)

1.2.2 T > 0 Free energy.

Reminder: partition function for free fermions in grnd conical ensemble is

Z = Tr e−β(Ĥ−µN̂) (6)

=
∑

n1,n2...nk∞

⟨n1, n2...n∞|e−β(Ĥ−µN̂)|n1, n2...n∞⟩ (7)

=
∑

n1,n2...n∞

⟨n1, n2...n∞|e−β(
∑

i[εini−µni])|n1, n2...n∞⟩ (8)

where i labels single-fermion state, e.g. i = k, σ, and ni runs from 0 to 1 for fermions.

Since many-fermion state in occ. no. representation is simple product: |n1, n2...n∞⟩ =

|n1⟩|n2⟩...|n∞⟩, can factorize:

Z =

(∑
n1

e−β[ε1n1−µn1]

)
· · ·

(∑
n∞

e−β[ε∞n∞−µn∞]

)
, (9)
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so

Z = Π∞
i=0

(
1 + e−β(εi−µ)

)
(10)

Since the free energy (grand canonical or thermodynamic potential) is Ω = −kBT logZ,

with independent variables (T, V, µ) we get

Ω = −kBT
∑∞

i=1 log
(
1 + e−β(εi−µ)

)
(11)

which has the differential

dΩ = −SdT − PdV −Ndµ (12)

S = −
(
∂Ω

∂T

)
V,µ

P = −
(
∂Ω

∂V

)
T,µ

N = −
(
∂Ω

∂µ

)
T,V

. (13)

1.2.3 Avg. fermion number.

We may want to take statistical averages of quantum operators, for which we need the

statistical operator ρ̂ = Z−1e−β(Ĥ−µN̂). Then any operator Ô has an expectation value

⟨Ô⟩ = Tr(ρ̂Ô). For example, avg. no. of particles

⟨N̂⟩ = Tr(ρN̂) (14)

=
Tr(e−β(Ĥ−µN̂)N̂)

Tr(e−β(Ĥ−µN̂))
(15)

Now note this is related to the derivative of Ω wrt chem. potential µ:

∂Ω

∂µ
= −kBT

∂ logZ

∂µ
=

−kBT
Z

∂Z

∂µ
(16)

= −Tr(ρN̂) = −⟨N̂⟩ (17)

and using Eq. 11, we see

⟨N̂⟩ =
∞∑
i=1

1

1 + eβ(εi−µ)
≡

∞∑
i=1

n0
i (18)

where ni0 is the avg. number of fermions in a single-particle state i in equilibrium at tem-

perature T . If we recall i was a shorthand for k, σ, but εk doesn’t depend on σ, we get

Fermi-Dirac distribution function

n0
kσ =

1

1 + eβ(εk−µ)
(19)
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1.2.4 Fermi gas at low T.

Since the Fermi energy of metals is so high (∼ 104K), it’s important to understand the

limit kBT ≪ εF , where the Fermi gas is nearly degenerate, and make sure the classical limit

kBT ≫ εF comes out right too. Let’s calculate, for example, the entropy and specific heat,

which can be obtained from the thermodynamic potential Ω via the general thermodynamic

relations

S = −
(
∂Ω

∂T

)
V,µ

; CV = T

(
∂S

∂T

)
V,µ

(20)

From (11) and (18), and including spin, we have

Ω = −2kBT
∑
k

log
(
1 + e−β(εk−µ)

)
= 2kBTL

3

∫
dεN(ε) log

(
1 + e−β(ε−µ)

)
⇒

cV ≡ CV
L3

= 2
1

kBT

∫ ∞

0

dεN(ε)

(
−∂f
∂ε

)
(ε− µ)2

= 2
1

kBT

∫ ∞

−µ
dξ N(ξ)

(
−∂f
∂ξ

)
ξ2 (21)

where I introduced the density of k-states for one spin N(ε) = L−3
∑

k
δ(ε− εk). The Fermi

function is f(ε) = 1/(1 + exp β(ε − µ)), & I defined shifted energy variable ξ = ε − µ. In

general, the degenerate limit is characterized by k sums which decay rapidly for energies far

from the Fermi surface, so the game is to assume the density of states varies slowly on a scale

of the thermal energy, and replace N(ε) by N(εF ) ≡ N0. This type of Sommerfeld expansion1

assumes the density of states is a smoothly varying fctn., i.e. the thermodynamic limit

V → ∞ has been taken (otherwise N(ε) is too spiky!). For a parabolic band, εk = ℏ2k2/(2m)

in 3D, the delta-fctn. can be evaluated to find2

N(ε) =
3

2

n

εF

(
ε

εF

)1/2

θ(ε). (24)

This can be expanded around the Fermi level:3

1If you are integrating a smooth function of ε multiplied by the Fermi function derivative −∂f/∂ε, the derivative restricts

the range of integration to a region of width kBT around the Fermi surface. If you are integrating something times f(ε) itself,

it’s convenient to do an integration by parts. The result is (see e.g. Ashcroft & Mermin appendix C)

∫ ∞

−∞
dεH(ε)f(ε) =

∫ µ

−∞
dεH(ε) +

∞∑
n=1

an(kBT )
2n d2n−1

dε2n−1
H(ε)|ε=µ (22)

where an =
(
2− 1/22(n−1)

)
ζ(2n) (ζ is Riemann ζ fctn., ζ(2) = π2/6, ζ(4) = π4/90, etc.).

2Here’s one way to get this:

N(ε) = L−3
∑
k

δ(ε− εk) →
∫

d3k

(2π)3
|
dε

dk
|−1δ(k −

√
2mε

ℏ
) =

∫
k2dk

2π2

( m

ℏ2k

)
δ(k −

√
2mε

ℏ
) =

3

2

n

εF

(
ε

εF

)1/2

(23)
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Figure 2: Density of states for parabolic spectrum, ε = k2/2m

N(ξ) = N(0) +N ′(0)ξ +
1

2
N ′′(0)ξ2 + . . . (26)

(In a horrible misuse of notation, N(0), N(εF ), and N0 all mean the density of states at the

Fermi level). The leading order term in the low-T specific heat is therefore found directly

by scaling out the factors of T in Eq. (21):

cV ≃ 2k2B
1

T
N0

∫ ∞

−∞
dξ

(
−∂f
∂ξ

)
ξ2 = 2k2BTN0

∫ ∞

−∞
dx

(
−∂f
∂x

)
x2︸ ︷︷ ︸ (27)

π2/3

So

cV ≃ 2π2

3
N0k

2
BT +O(T 3). (28)

This is the famous linear in temperature specific heat of a free Fermi gas. 4

1.2.5 Classical limit.

I won’t calculate the classical limit. All the standard results for a Boltzman statistics gas,

e.g. cV (T ≫ εF ) = (3/2)NkB follow immediately from noticing that the Fermi function
3When does the validity of the expansion break down? When the approximation that the density of states is a smooth

function does, i.e. when the thermal energy kBT is comparable to the splitting between states at the Fermi level,

δεk|εF ≃
ℏ2kF δk
m

≃ εF
δk

kF
≃ εF

a

L
, (25)

where a is the lattice spacing and L is the box size. At T = 1K, requiring kBT ∼ δε, and taking εF /kB ≃ 104K says that

systems (boxes) of size less than 1µm will “show mesoscopic" effects, i.e. results from Sommerfeld-type expansions are no longer

valid.
4Note in (28), I extended the lower limit −µ of the integral in Eq. (21) to −∞ since it can be shown that the chemical

potential is very close to εF at low T . Since we are interested in temperatures kBT ≪ εF , and the range in the integral is only

several kBT at most, this introduces neglible error.

Why:

At T=0, the Fermi function n0
k → step function θ(µ − εk), so we know µ(T = 0) must just be the Fermi energy εF =

9



reduces to the Boltzman distribution,

f(ε) → e−β(ε−µ), T → ∞. (29)

(You will need to convince yourself that the classical result µ/(kBT ) → −∞ is recovered to

make this argument.)

1.3 Second quantization

The idea behind the term "second quantization" arises from the fact that in the early days of

quantum mechanics, forces between particles were treated classically. Momentum, position

and other observables were represented by operators which do not in general commute with

each other. Particle number is assumed to be quantized as one of the tenets of the theory,

e.g. Einstein’s early work on blackbody radiation.

At some point it was also realized that forces between particles are also quantized be-

cause they are mediated by the exchange of other particles. In Schrödinger’s treatment of the

H-atom the force is just the classical static Coulomb force, but a more complete treatment

includes the interaction of the H-atom and its constituents with the radiation field, which

must itself be quantized (“photons"). This quantization of the fields mediating the interac-

tions between matter particles was referred to as “second" quantization. In the meantime,

a second-quantized description has been developed in which both “matter fields" and “force

fields" are described by second-quantized field operators. In fact, modern condensed matter

physics usually does go backwards and describe particles interacting via classical Coulomb

forces again,5 but these particles are described by field operators. Once the calculational

rules are absorbed, calculating with the 2nd-quantized formalism is easier for most people

than doing 1st-quantized calculations. They must, of course, yield the same answer, as they

are rigorously equivalent. I will not prove this equivalence in class, as it is exceedingly te-

dious, but merely motivate it for you below. I urge you to read the proof once for your own
ℏ2(3π2n)2/3/2m.

n =
N

L3
= 2L−3

∞∑
k

n0
k

= 2

∫
dεN(ε)f(ε)

≃
∫ µ

−∞
dεN(ε) +

π2

6
(kBT )

2N ′(ε)|ε=µ (continued on next page)

≃
∫ εF

−∞
dεN(ε)︸ ︷︷ ︸+(µ− εF )N(εF ) +

π2

6
(kBT )

2N ′(ε)|ε=µ

n

⇒ µ ≃ εF −
π2

6
(kBT )

2N
′(εF )

N(εF )

Since N ′/N is typically of order 1/ε2F , corrections are small.
5Q: when does this approximation break down?
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edification, however.6

1.3.1 Symmetry of many-particle wavefunctions

Quantum mechanics allows for the possibility of indistinguishable particles, and nature seems

to have taken advantage of this as a way to construct things. No electron can be distinguished

from another electron, except by saying where it is, what quantum state it is in, etc. Internal

quantum-mechanical consistency requires that when we write down a many-identical-particle

state, we make that state noncommittal as to which particle is in which single-particle state.

For example, we say that we have electron 1 and electron 2, and we put them in states a

and b respectively, but exchange symmetry requires (since electrons are fermions) that a

satisfactory wave-function has the form

Ψ(r1, r2) = A[(ψa(r2)ψb(r1)− ψa(r1)ψb(r2)]. (30)

If we have N particles, the wavefunctions must be either symmetric or antisymmetric under

exchange:7

ΨB(r1 . . . ri . . . rj . . . rN) = ΨB(r1 . . . rj . . . ri . . . rN) Bosons (31)

ΨF (r1 . . . ri . . . rj . . . rN) = −ΨF (r1 . . . rj . . . ri . . . rN) Fermions (32)

Given a set of single-particle wave functions ϕEi
(r), where Ei is a quantum number, e.g.

energy (N.B. it can be any set of quantum numbers!) we can easily construct wave fctns.

which satisfy statistics, e.g.

Ψ
B
F
n1...n∞(r1, . . . rN) =

(
n1!n2! · · ·n∞!

N !

)1/2 ∑
P∈{E1,E2...EN}

(±1) sgnP P ΠN
i=1 ϕEi

(ri), (33)

where the factor in parentheses is the number of ways to arrange N objects in boxes, with

n1 in the first box, ...

Remarks on Eq. (33):
6See, e.g. Fetter & Wallecka, Quantum Theory of Many-Particle Systems
7This is related to the spin-statistics theorem first formulated by Fierz and Pauli. The proof requires the PCT theorem, proved

by Schwinger, Lüders and Pauli, which says that PCT (parity-charge conjugation-time reversal) is a good symmetry for a system

described by a Lorentz-invariant field theory). Recently, a generalization of Bose & Fermi statistics to particles called has been

intensely discussed. Under exchange an anyon wavefunction behaves as ΨA(r1 . . . ri . . . rj . . . rN ) = eiθΨA(r1 . . . rj . . . ri . . . rN )

for some 0 ≤ θ ≤ 2π.
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• sum all permutations of the Ei’s in product ϕE1(r1)ϕE2(r2) . . . ϕEN
(rN).8

• # distinct Ei’s occuring may be less than N , some missing because of multiple occupa-

tion in boson case. Example:

Fig. 2. Possible state of 3 noninteracting Bose

particles

ΨB
20100...0(r1, r2, r3) =

=
1√
3
{ϕE0

(r1)ϕE0
(r2)ϕE2

(r3) +

+ϕE2(r1)ϕE0(r2)ϕE0(r3) +

+ϕE0
(r1)ϕE2

(r2)ϕE0
(r3)}

• Completely antisymmetric Fermionic wavefunction called Slater determinant:

Ψn1...n∞(r1, . . . rN) =

(
1

N !

)1/2

∣∣∣∣∣∣∣∣∣
ϕEmin

(r1) . . . ϕEmax(r1)
...

...

ϕEmin
(rN) . . . ϕEmax(rN)

∣∣∣∣∣∣∣∣∣ (34)

where there are N eigenvalues which occur between Emin and Emax, inclusive, corre-

sponding to N occupied states.

1.3.2 Field operators

2nd quantization is alternative way of describing many body states. We describe a particle

by a field operator

ψ̂(r) =
∑
i

aiϕEi
(r) (35)

where i runs over the quantum numbers associated with the set of eigenstates ϕ, ai is a

“coefficient" which is an operator (I’m going to neglect the hats (ˆ ) which normally denote

an operator for the a’s and a†’s), and ϕEi
is a “1st-quantized" wavefunction, i.e. a normal

Schrödinger wavefunction of the type we have used up to now, such that (for example)

HϕEi
= EiϕEi

. Now we impose commutation relations[
ψ̂(r), ψ̂†(r′)

]
±

= δ(r− r′) (36)[
ψ̂(r), ψ̂(r′)

]
±

=
[
ψ̂†(r), ψ̂†(r′)

]
±
= 0, (37)

8You might think the physical thing to do would be to sum all permutations of the particle labels. This is correct, but

actually makes things harder since one can double count if particles are degenerate (see example of 3 bosons below.) The

normalization factor is chosen with the sum over all permutation of the Ei’s in mind.
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which implies

[ai, a
†
j]± = δij ; [ai, aj]± = [a†i , a

†
j]± = 0. (38)

The upper sign is for fermions and the lower for bosons in Eqs. (37) and (38).

Now construct many-body states from vacuum (no particles) |0⟩. a called annihilation op-

erator, a† creation operator (see below).

Examples & comments (all properties follow from commutation relations):

Bosons:

• one particle in state i: a†i |0⟩ ≡ |1⟩i

• annihilate vacuum ai|0⟩ = 0

• (Bosons)9 a†ia
†
i |0⟩ ≡ |2⟩i

• (Bosons) two in i and one in j: a†ia
†
ia

†
j|0⟩ ≡ |2⟩i|1⟩j

• a†iai ≡ n̂i is number operator for state i.

Proof: (bosons)

(a†iai)|n⟩i = (a†iai)(a
†
i )
n|0⟩

= a†i (1 + a†iai)(a
†
i )
n−1|0⟩ = |n⟩i + (a†i )

2ai(a
†
i )
n−1|0⟩

= 2|n⟩i + (a†i )
3ai(a

†
i )
n−2|0⟩ · · · = n|n⟩i

Similarly show (bosons):10

• a†i |n⟩i = (n+ 1)1/2|n+ 1⟩i

• ai|n⟩i = n1/2|n− 1⟩i

• many-particle state(
1

n1!n2! . . . n∞!

)1/2

(a†1)
n1(a†2)

n2 · · · |0⟩ ≡ |n1, n2 . . . n∞⟩ (39)

⋆ occupation numbers specify state completely, exchange symmetry included due to

commutation relations! (normalization factor left for problem set)

Fermions

9Analogous state for fermions is zero, by commutation relations-check!
10By now it should be clear that the algebra for the bosonic case is identical to the algebra of simple harmonic oscillator

ladder operators.
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• Anticommutation relations complicate matters, in particular note

a2 = (a†)2 = 0 ⇒ ni =
1

0
(Pauli principle) (40)

• so

a†|0⟩ = |1⟩ a|1⟩ = |0⟩

a†|1⟩ = 0 a|0⟩ = 0
(41)

• many-particle state

(a†1)
n1(a†2)

n2 · · · |0⟩ ≡ |n1, n2 . . . n∞⟩ (42)

⋆ note normalization factor is 1 here.

• action of creation & annilation operators (suppose ns = 1):

as| . . . ns . . . ⟩ = (−1)n1+n2+...ns−1(a†1)
n1 · · · asa†s · · · (a†∞)n∞|0⟩

= (−1)n1+n2+...ns−1(a†1)
n1 · · · (1− a†sas︸︷︷︸) · · · (a†∞)n∞|0⟩

=0

= (−1)n1+n2+...ns−1| . . . ns − 1 . . . ⟩

also

as| . . . 0 . . . ⟩ = 0 (43)

and similarly

a†s| . . . ns . . . ⟩ =

 (−1)n1+n2+...ns−1| . . . ns + 1 . . . ⟩ ns = 0

0 ns = 1
(44)

1.3.3 2nd-quantized Hamiltonian

⋆ Point: Now “it can be shown"11 that state vector

|Ψ(t)⟩ =
∑

n1,n2...n∞

f(n1, n2 . . . n∞, t)|n1, n2 . . . n∞⟩ (45)

satisfies the Schrödinger equation (our old friend)

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ (46)

11Normally I hate skipping proofs. However, as mentioned above, this one is so tedious I just can’t resist. The bravehearted

can look, e.g. in chapter 1 of Fetter and Wallecka.
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if we take the "2nd-quantized" form of Ĥ

Ĥ =
∑
ij

a†i⟨i|T |j⟩aj +
1

2

∑
ijkℓ

a†ia
†
j⟨ij|V |kℓ⟩aℓak (47)

=

∫
d3rψ̂†(r)T (r,∇r)ψ̂(r) (48)

+
1

2

∫ ∫
d3r d3r′ψ̂†(r)ψ̂†(r′)V (r, r′)ψ̂(r′)ψ̂(r) (49)

where the 1st quantized Hamiltonian was H = T + V . Here i indexes a complete set of

single-particle states.

Translationally invariant system

It may be more satisfying if we can at least verify that this formalism “works" for a special

case, e.g. translationally invariant systems. For such a system the momentum k is a good

quantum number, so choose single-particle plane wave states

ϕi(r) = ϕkσ(r) = L−3/2eik·ruσ, (50)

where uσ is a spinor like u↓ =
(
0
1

)
, etc. 1st quantized T is −∇2/(2m),12 so 2nd-quantized

kinetic energy is

T̂ ≡
∑
ij

a†i⟨i|T |j⟩aj =
∑
kσ

(
k2

2m

)
a†kσakσ . (51)

Since we showed a†kσakσ is just number operator which counts # of particles in state kσ, this

clearly just adds up the kinetic energy of all the occupied states, as it should. For general

two-particle interaction V , let’s assume V (r, r′) = V (r− r′) only, as must be true if we have

transl. invariance. In terms of the Fourier transform

V (q) =
1

L3

∫
d3r eiq·r V (r) (52)

we have (steps left as exercise)

V̂ =
1

2

∑
k,k′,q
σ,σ′

a†kσa
†
k′+qσ′V (q)ak′σak+qσ (53)

Note that if you draw a picture showing k′ and k + q being destroyed (disappearing), and

k and k′ + q being created, you realize that the notation describes a scattering process with

two incoming particles and two outgoing ones, where momentum is conserved; in fact, it is

easy to see that momentum q is transferred from one particle to another. This is called a

Feynman diagram.

12I’ll set ℏ = 1 from here on out, unless required for an honest physical calculation.
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Figure 3: Feynman diagram for 2-body interaction showing momentum conservation.

1.3.4 Schrödinger, Heisenberg, interaction representations

Here we just give some definitions & reminders on different (equivalent) representations of

quantum mechanics. In different reps., time dependence is associated with states (Schrödinger),

operators (Heisenberg), or combination (interaction).

• Schrödinger picture

state |ψ̂S(t)⟩, operators ÔS ̸= ÔS(t)

i
∂

∂t
|ψ̂S(t)⟩ = Ĥ|ψ̂S(t)⟩

has formal solution

|ψ̂S(t)⟩ = e−iĤ(t−t0)|ψ̂S(t0)⟩ (54)

Note Ĥ hermitian ⇒ time evolution operator Û ≡ eiĤ(t−t0) is unitary.

• Interaction picture (useful for pert. thy.)

Ĥ = Ĥ0 + Ĥ ′ (where Ĥ0 usually soluble)

Def. in terms of Schr. picture: |ψ̂I(t)⟩ = eiĤ0t|ψ̂S(t)⟩

ÔI(t) = eiĤ0tÔSe
−iĤ0t

⇒ i
∂

∂t
|ψ̂I(t)⟩ = Ĥ ′(t)|ψ̂I(t)⟩

with Ĥ ′(t) = eiĤ0tĤ ′e−iĤ0t

Remarks:
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– states and ops. t-dependent in interaction picture, but time dependence of operators

very simple, e.g.

Ĥ0 =
∑
k

εka
†
kak

i
∂

∂t
akI(t) = eiĤ0t[ak, Ĥ0]e

−iĤ0t

= εkakI(t)

⇒ akI(t) = ake
−iεkt

– Time evolution operator determines state at time t:

|ψ̂I(t)⟩ = Û(t, t0)|ψ̂I(t0)⟩

From Schrödinger picture we find

Û(t, t0) = eiĤ0te−iĤ(t−t0)e−iĤ0t0 (55)

(Note ([Ĥ, Ĥ0] ̸= 0!)

• Heisenberg picture

state |ψ̂H⟩ t-independent,

operators ÔH(t) = eiĤtÔSe
−iĤt

so operators evolve according to Heisenberg eqn. of motion

i
∂

∂t
ÔH(t) = [ÔH(t), H] (56)

⋆ Note–compare three reps. at t = 0:

|ψ̂H⟩ = |ψ̂S(0)⟩ = |ψ̂I(0)⟩ (57)

ÔS = ÔH(0) = ÔI(0) (58)

1.4 Phonons

1.4.1 Review of simple harmonic oscillator quantization

I will simply write down some results for the standard SHO quantization from elementary

QM using “ladder operators". We consider the Hamiltonian

H =
p2

2M
+
K

2
q2 (59)
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and extract the relevant dimensions by putting

ω2 =
K

M

ξ = q

(
Mω

ℏ

)1/2

−i ∂
∂ξ

= p(ℏMω)−1/2 (60)

so

H =
ℏω
2

(
− ∂2

∂ξ2
+ ξ2

)
. (61)

We recall soln. goes like e−ξ2/2Hn(ξ), where Hn are Hermite polynomials, and that eigenval-

ues are

En = ℏω(n+ 1/2) (62)

Define ladder operators a, a† as

a =
1√
2

(
ξ +

∂

∂ξ

)
(63)

a† =
1√
2

(
ξ − ∂

∂ξ

)
(64)

Ladder ops. obey commutation relations (check)

[a, a†] = 1 ; [a, a] = 0 ; [a†, a†] = 0 (65)

& then H may be written (check)

H = ℏω
(
a†a+

1

2

)
. (66)

a, a† connect eigenstates of different quantum nos. n, as

|n⟩ = (a†)n

(n!)1/2
|0⟩, (67)

where |0⟩ is state which obeys a|0⟩ = 0. Operating on |n⟩ with a† may be shown with use of

commutation relations to give

a†|n⟩ = (n+ 1)1/2|n+ 1⟩ ; a|n⟩ = n1/2|n− 1⟩ (68)

so with these defs. the ladder operators for SHO are seen to be identical to boson creation

and annihilation operators defined above in Sec. 1.3.2.

1.4.2 1D harmonic chain

If we now consider N atoms on a linear chain, each attached to its neighbor with a “spring"

of spring constant K as shown in figure. First let’s consider the problem classically. The
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Figure 4: Linear chain with spring couplings K. Dynamical variables are qi ≡ xi − xeq
i

Hamiltonian is

H =
∑
ℓ

p2ℓ
2m

+
K

2
(qℓ − qℓ+1)

2, (69)

where the qℓ’s are the displacements from atomic equilibrium positions. Now Hamilton’s

eqns. (or Newton’s 2nd law!) yield

−Mq̈j =Mω2qj = K(2qj − qj−1 − qj+1). (70)

A standing sinusoidal wave qj = A cos(kaj) satisfies this equation if the eigenfrequencies

have the form

ω2
k =

K

M
2(1− cos ka), (71)

where if a is the lattice constant, k = 2π/λ. Note that for small k, ωk is linear, ωk ≃

(K/M)1/2ka.13

This is the classical calculation of the normal modes of oscillation on a 1D chain. To quan-

tize the theory, let’s impose canonical commutation relations on the position and momentum

of the ℓth and jth atoms:

[qℓ, pj] = iℏδℓm (72)

and construct collective variables which describe the modes themselves (recall k is wave

vector, ℓ is position) :

qℓ =
1

N1/2

∑
k

eikaℓQk ; Qk =
1

N1/2

∑
ℓ

e−ikaℓqℓ

pℓ =
1

N1/2

∑
k

e−ikaℓpk ; Pk =
1

N1/2

∑
ℓ

eikaℓpℓ, (73)

13Note since k = 2πn/(Na), the ωk are independent of system size
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which leads to canonical commutation relations in wave vector space:

[Qk, Pk′ ] =
1

N

∑
ℓ,m

e−ikaleik
′am[qℓ, pm]

=
iℏ
N

∑
ℓ

e−ial(k−k
′) = iℏδk,k′ . (74)

Let’s now express the Hamiltonian (69) in terms of the new variables. We have, with a little

algebra and Eq. (71),∑
ℓ

p2ℓ =
∑
k

PkP−k (75)

K

2

∑
ℓ

(qℓ − qℓ−1)
2 =

K

2

∑
k

QkQ−k(2− eika − e−ika) =
M

2

∑
k

ω2
kQkQ−k

so

H =
1

2M

∑
k

pkp−k +
M

2

∑
k

ω2
kQkQ−k . (76)

Note that the energy is now expressed as the sum of kinetic + potential energy of each mode

k, and there is no more explicit reference to the motion of the atomic constituents. To second

quantize the system, we write down creation and annihilation operators for each mode k.

Define

ak =

(
Mωk
2ℏ

)1/2(
Qk +

i

Mωk
P−k

)
(77)

a†k =

(
Mωk
2ℏ

)1/2(
Q−k −

i

Mωk
Pk

)
(78)

which can be shown, just as in the single SHO case, to obey commutation relations[
ak, a

†
k′

]
= δkk′ (79)

[ak, ak′ ] = 0 (80)[
a†k, a

†
k′

]
= 0 (81)

and the Hamiltonian expressed simply as∑
k

ℏωk
(
a†kak +

1

2

)
(82)

which we could have probably guessed if we had realized that since the normal modes don’t

interact, we have simply the energy of all allowed harmonic oscillators. Note this is a quantum

Hamiltonian, but the energy scale in H is the classical mode frequency ωk.

1.4.3 Debye Model

Let us imagine using the Hamiltonian (82) as a starting point to calculate the specific heat

of a (3D) solid due to phonons. We take the Debye model for the dispersion to simplify the
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calculation,

ωk =

 ck k < kD

0 k > kD
(83)

where the Debye wave vector kD = (6π2n)1/3 is obtained by replacing the first Brillouin zone

of the solid by a sphere of radius kD which contains N wave vectors, with N the number of

ions in the crystal. The average value of the Hamiltonian is

U = ⟨H⟩ = 3
∑
k

ℏωk

(
⟨a†kak⟩+

1

2

)
= 3

∑
k

ℏωk

(
1

eβℏωk − 1
+

1

2

)
(84)

since the average number of phonons in state k is simply the expectation value of a boson

number operator

⟨a†kak⟩ ≡ Tr(ρa†kak) = b(ℏωk), (85)

where b(x) = (exp(βx) − 1)−1 is the free Bose distribution function. The factors of 3 come

from the 3 independent phonon polarizations, which we consider to be degenerate here.

Taking one derivative wrt temperature, the spec. heat per unit volume is14

cV =
∂u

∂T

∣∣∣∣
n

= 3
∂

∂T

∑
k

ℏck
eβℏck − 1

= 3
∂

∂T

ℏc
2π2

∫ kD

0

dk
k3

eβℏck − 1

≃ ∂

∂T

3(kBT )
4

2π2(ℏc)3

∫ ∞

0

x3

ex − 1︸ ︷︷ ︸ =
∂

∂T

π2

10

(kBT )
4

(ℏc)3
=

2π2

5
kb

(
kBT

ℏc

)3

(86)

π4/15

So far we have done nothing which couldn’t have been done easily by ordinary 1st-

quantized methods. I have reviewed some Solid State I material here by way of introduction

to problems of interacting particles to which you have not been seriously exposed thus far in

the condensed matter grad sequence. The second quantization method becomes manifestly

useful for the analysis of interacting systems. I will now sketch the formulation (not the

solution) of the problem in the case of the phonon-phonon interaction in the anharmonic

crystal.

1.4.4 Anharmonicity & its consequences

As you will recall from Solid State I, most thermodynamic properties of insulators, as well

as neutron scattering experiments on most materials, can be explained entirely in terms of

the harmonic approximation for the ions in the crystal, i.e. by assuming a Hamiltonian

of the form (82). There are some problems with the harmonic theory. First, at higher

temperatures atoms tend to explore the anharmonic parts of the crystal potential more
14Recall du = TdS − pdV and ∂u

∂T

∣∣∣
V

= T ∂S
∂T

∣∣∣
V
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and more, so deviations from predictions of the equilibrium theory increase. The thermal

expansion of solids in the harmonic approximation is rigorously zero.15 Secondly, some

important qualitative aspects of transport cannot be understood: for example, the harmonic

theory predicts infinite thermal transport of insulators! (See A&M Ch. 25 for a qualitative

discussion of these failures).

The obvious way to go beyond the harmonic approximation is to take into account higher-

order corrections to the real-space crystal potential systematically, expanding16

U =
1

2!

∑
ℓm

D(2)(ℓ,m)qℓqm +
1

3!

∑
ℓmn

D(3)(ℓ,m, n)qℓqmqn + . . . , (88)

where

D(n)(ℓ,m, . . . n) =
∂nU

∂qℓ∂qm . . . ∂qn

∣∣∣∣
ui=0

(89)

are the so-called dynamical matrices.17 Using Eqs. (73,78) we find

qℓ =
1√
N

(
ℏ

2mω

)1/2∑
k

Qke
ikaℓ =

∑
k

(ak + a†−k)e
ikaℓ (90)

Note that the product of 3 displacements can be written

qℓqmqn =
1

(N)3/2

∑
k1k2k3

ei(k1aℓ+k2am+k3an)Qk1Qk2Qk3 (91)

so the cubic term may be written

H3 =
∑
k1k2k3

V (3)(k1k2k3)Qk1Qk2Qk3 (92)

with

V (3)(k1k2k3) =
∑
ℓmn

D(3)(ℓ,m, n) exp[i(k1ℓ+ k2m+ k3n)] (93)

Note now that the indices ℓ, m, n run over all unit cells of the crystal lattice. Since crystal

potential itself is periodic, the momenta k1, k2, and k3 in the sum are not really independent.

In fact, if we shift all the sums in (93) by a lattice vector j, we would have
15This follows from the independence of the phonon energies in harmonic approx. of the system volume. (see above) Since

pressure depends on temperature only through the volume derivative of the mode freqs. (see A & M p. 490),

(
∂V

∂T

)
p

=

(
∂p
∂T

)
V(

∂p
∂V

)
T

= 0 (87)

16I have dropped polarization indices everywhere in this discussion, so one must be careful to go back and put them in for a

2- or 3D crystal.
17Recall that the theory with only harmonic and cubic terms is actually formally unstable, since arbitrarily large displacements

can lower the energy by an arbitrary amount. If the cubic terms are treated perturbatively, sensible answers normally result.

It is usually better to include quartic terms as shown in figure below, however.
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V (3)(k1k2k3) =
∑
ℓmn

D(3)(ℓ+ j,m+ j, n+ j)ei(k1aℓ+k2am+k3an)ei(k1+k2+k3)aj

=
∑
ℓmn

D(3)(ℓ,m, n)ei(k1aℓ+k2am+k3an)ei(k1+k2+k3)aj (94)

where in the last step I used the fact that the crystal potential U in every lattice cell is

equivalent. Now sum both sides over j and divide by N to find

V (3)(k1k2k3) =
∑
ℓmn

D(3)(ℓ,m, n) exp[i(k1ℓ+ k2m+ k3n)]∆(k1 + k2 + k3), (95)

where

∆(k) =
1

N

∑
j

eikaj = δk,G (96)

and G is any reciprocal lattice vector.

Return now to (92). We have ascertained that V (3)(ℓ,m, n) is zero unless k1+k2+k3 = G,

i.e. crystal momentum is conserved. If we expand (92), we will get products of 3 creation or

annihilation operators with coefficients V (3). The values of these coefficients depend on the

elastic properties of the solid, and are unimportant for us here. The momenta of the three

operators must be such that momentum is conserved up to a reciprocal lattice vector, e.g. if

we consider the term ak1a
†
−k2a

†
−k3 we have a contribution only from k1+ k2+ k3 = G.18 Note

this term should be thought of as corresponding to a physical process wherein a phonon with

momentum k1 is destroyed and two phonons with momenta −k2 and −k3 are created. It can

be drawn "diagrammatically" à la Feynman (as the 1st of 2 3rd-order processes in the figure

below).

18As usual, processes with G = 0 are called normal processes, and those with finite G are called Umklapp processes.
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Figure 5: Diagrams representing phonon-phonon collision processes allowed by energy and momentum con-

servation in 3rd and 4th order.

Questions:

• How does energy conservation enter? What is importance of processes involving de-

struction or creation of 3 phonons?

• If one does perturbation theory around harmonic solution, does cubic term contribute

to thermal averages?

• Can we calculate thermal expansion with cubic Hamiltonian?

2 Electron-electron interactions

The electronic structure theory of metals, developed in the 1930’s by Bloch, Bethe, Wilson

and others, assumes that electron-electron interactions can be neglected, and that solid-

state physics consists of computing and filling the electronic bands based on knowldege

of crystal symmetry and atomic valence. To a remarkably large extent, this works. In

simple compounds, whether a system is an insulator or a metal can be determined reliably

by determining the band filling in a noninteracting calculation. Band gaps are sometimes

difficult to calculate quantitatively, but inclusion of simple renormalizations to 1-electron

band structure known as Hartree-Fock corrections, equivalent to calculating the average

energy shift of a single electron in the presence of an average density determined by all other

electrons (“mean field theory"), almost always suffices to fix this problem. There are two

reasons why we now focus our attention on e−−e− interactions, and why almost all problems

of modern condensed matter physics as it relates to metallic systems focus on this topic:

1. Why does the theory work so well in simple systems? This is far from clear. In a good

metal the average interelectron distance is of the order of or smaller than the range of the
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interaction, e.g. the screening length ℓscr ∼ (c/e2m)1/2ρ−1/6, where ρ is the density, of

order 1nm for typical parameters. One might therefore expect that interactions should

strongly modify the picture of free electrons commonly used to describe metals.

2. More complicated systems exhibit dramatic deviations from the predictions of band

theory. I refer now not simply to large quantitative errors in the positions of 1-electron

bands, but to qualitative discrepancies in the behavior of the materials. The most inter-

esting modern example is the class of compounds known as the transition metal oxides,

including the cuprate materials which give rise to high-temperature superconductivity

(HTS).19

2.1 Mean field theory (Hartree-Fock)

Let’s begin with the second-quantized form of the electronic Hamiltonian with 2-body inter-

actions. The treatment will be similar to that of Kittel (Ch. 5), but for comparison I will

focus on a translationally invariant system and do the calculation in momentum space. In

this case as we have shown the Hamiltonian is20

Ĥ = T̂ + V̂ , (97)

T̂ = =
∑
kσ

(
k2

2m

)
c†kσckσ (98)

V̂ =
1

2V
∑
k,k′,q
σ,σ′

c†kσc
†
k′+qσ′V (q)ck′σ′ck+qσ. (99)

The 2-body interaction V̂ contains 4 Fermi operators c and is therefore not exactly soluble.

The goal is to write down an effective 2-body Hamiltonian which takes into account the
19The parent compounds of the HTS (e.g. La2CuO4 and YBa2Cu3O4 are without exception antiferromagnetic and insulating.

Historically, this discovery drove much of the fundamental interest in these materials, since standard electronic structure

calculations predicted they should be paramagnetic metals. This can easily be seen by simple valence counting arguments. The

nominal valences in e.g. La2CuO4 are La3+, O2−, and Cu2+ The La and O ions are in closed shell configurations, whereas

the Cu is in an [Ar]3d9 state, i.e. a single d-hole since there are 10 d electrons in a filled shell. The 1 hole/unit cell would

then suggest a 1/2 filled band and therefore a metallic state. The crystal field splittings in the planar Cu environment give

the 3dx2−y2 state being lowest in energy (see later), and since the n.n.’s are the O′s, it would seem likely that the lowest O

crystal field state in the planar environment, the O 3p, will hybridize with it. Sophisticated LDA calculations confirm this

general picture that the dominant band at the Fermi level is a 1/2-filled planar Cu dx2−y2 - O 3p band. Instead, this compound

is found experimentally to be an electrical insulator and an antiferromagnet with a Neel temperature of 300K! This strongly

suggests that the band calculations are missing an important element of the physics of the high-Tc materials. In the transition

metals and TMO’s band theory is notoriously bad at calculating band gaps in insulators, because of the presence of strong local

Coulomb interactions which lead to electronic correlations neglected in the theory. It is therefore reasonable to assume that

a similar mechanism may be at work here: extremely strong Coulomb interactions in the Cu − O planes are actually opening

up a gap in the 1/2-filled band at the Fermi level and simultaneously creating a magnetic state. This phenomenon has been

studied in simpler systems since the 60s and is known as the Mott-Hubbard transition.
20For the moment, we ignore the ionic degrees of freedom and treat only the electrons. To maintain charge neutrality, we

therefore assume the electrons move in a neutralizing positive background (“jellium model").
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average effects of the interactions. We therefore replace the 4-Fermi interaction with a sum

of all possible 2-body terms,

c†1c
†
2c3c4 ≃ −⟨c†1c3⟩c

†
2c4 − ⟨c†2c4⟩c

†
1c3 + ⟨c†1c4⟩c

†
2c3 + ⟨c†2c3⟩c

†
1c4, (100)

where the + and − signs are dictated by insisting that one factor of -1 occur for each

commutation of two fermion operators required to achieve the given ordering. This can be

thought of as “mean field terms", in the spirit of Pierre Weiss, who replaced the magnetic

interaction term Si · Sj in a ferromagnet by ⟨Si⟩Sj = ⟨S⟩Sj ≡ −HeffSj, i.e. he replaced the

field Si by its homogeneous mean value S, and was left with a term equivalent to a 1-body

term corresponding to a spin in an external field which was soluble. The mean field ⟨S⟩ in

the Weiss theory is the instantaneous average magnetization of all the other spins except the

spin Sj, and here we attempt the same thing, albeit somewhat more formally. The “mean

field"

⟨c†kσck′σ′⟩ = ⟨c†kσckσ⟩δkk′δσσ′ ≡ nkσδkk′δσσ′ (101)

is the average number of particles nkσ in the state kσ, which will be weighted with the 2-body

interaction V (q) to give the average interaction due to all other particles (see below).21

With these arguments in mind, we use the approximate form (100) and replace the inter-

action V̂ in (99) by

V̂HF =
1

2

∑
kk′q
σσ′

V (q)
[
−⟨c†kσck′σ′⟩c†k′+qσ′ck+qσ − ⟨c†k′+qσ′ck+qσ⟩c†kσck′σ′+

+⟨c†kσck+qσ⟩c†k′+qσ′ck′σ′ + ⟨c†k′+qσ′ck′σ′⟩c†kσck+qσ

]
= −

∑
kq
σ

V (q)⟨c†kσckσ⟩c
†
k+qσck+qσ + V (0)

∑
kk′
σσ′

⟨c†kσckσ⟩c
†
k′σ′ck′σ′

=
∑
kσ

(
−
∑
q

nk−qσV (q) + nV (0)

)
c†kσckσ, (102)

where the total density n is defined to be n =
∑

kσ nkσ. Since this is now a 1-body term of

the form
∑

kσ ΣHF (k)a
†
kσakσ, it is clear the full Hartree-Fock Hamiltonian may be written

in terms of a k-dependent energy shift:

ĤHF =
∑
kσ

(
ℏ2k2

2m
+ ΣHF (k)

)
c†kσckσ, (103)

ΣHF (k) = −
∑
q

nk−qσV (q)︸ ︷︷ ︸+nV (0)︸ ︷︷ ︸ (104)

Fock Hartree (105)
21Note we have not allowed for mean fields of the form ⟨c†c†⟩ or ⟨aa⟩. These averages vanish in a normal metal due to number

conservation, but will be retained in the theory of superconductivity.
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Note the Hartree or direct Coulomb term, which represents the average interaction energy

of the electron kσ with all the other electrons in the system, is merely a constant, and as

such it can be absorbed into a chemical potential. In fact it is seen to be divergent if V (q)

represents the Coulomb interaction 4πe2/q2, but this divergence must cancel exactly with

the constant arising from the sum of the self-energy of the positive background and the

interaction energy of the electron gas with that background.22 The Fock, or exchange term23

is a momentum-dependent shift.

2.1.1 Validity of Hartree-Fock theory

Crucial question: when is such an approximation a good one for an interacting system? The

answer depends on the range of the interaction. The HF approximation becomes asymptot-

ically exact for certain quantities in the limit of high density Fermi systems if interactions

are suffiently long-range! This is counterintuitive, for it seems obvious that if the particles

are further apart on the average, they will interact less strongly and less often, so a mean

field theory like Hartree-Fock theory should work well. This is true if the interactions are

short-ranged, such that for suffiently low densities the particles spend no time within an

interaction length. The interaction is typically characterized by a strength V and a range a,

and if the interparticle spacing r0 ≫ a, the particles don’t feel the potential much and the

ground state energy, for example, of such a gas can be expanded at T = 0 in powers of a/r0.

If a → 0, the interaction dispapears and the the only characteristic energy left at T = 0 is

the zero-point energy, i.e. the energy scale obtained by confining the particle to a cage of

size the interparticle spacing r0, i.e. ℏ2/(2mr20). This is just the Fermi energy in the case of

a Fermi system. Thus we might expect HF theory to be quite good for a dilute gas of 3He,

since the 3He-3He interaction is certainly short-ranged; unfortunately, liquid 3He has a ≃ r0,

so corrections to HF are always important.

What about for a metal? We can do a simple argument to convince ourselves that HF

isn’t applicable for low density systems with Coulomb interactions. Let’s rewrite the basic

2-body Hamiltonian in dimensionless variables,
22See e.g., Kittel
23The origin of the term exchange is most easily seen in many-body perturbation theory, where the Fock term is seen to arise

from a scattering process where the particle in state kσ changes places with a particle from the medium in an intermediate

state.
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Ĥ =
∑
kσ

(
ℏ2k2

2m

)
c†kσckσ +

1

2V
∑
k,k′,q
σ,σ′

c†kσc
†
k′+qσ′

(
4πe2

q2

)
ck′σ′ck+qσ (106)

=
e2

2a0r2s

∑
k̄σ

k̄2c†
k̄σ
ck̄σ +

3rs
N

∑
k̄,k̄′,q̄
σ,σ′

c†
k̄σ
c†
k̄′+q̄σ′

(
1

q̄2

)
ck̄′σ′ck̄+q̄σ

 , (107)

where I’ve used the system volume V = N(4/3)πr30, Bohr radius a0 = ℏ2/me2, defined

rs ≡ r0/a0, and scaled all momenta as k = k̄r−1
0 , etc. Applying dimensional analysis, we

expect the two terms
∑
k̄2c†c and

∑
c†c†(1/q̄2)cc to be of order 1, so that it is clear that

the interaction term becomes negligible in the limit rs → 0 (high density). On the other

hand, it’s also clear that had the 1/q2 factor not been present in the interaction, it would

have scaled as 1/rs instead, and become negligible in the low density limit.

One can do a more careful, formal perturbation analysis for a simple quantity like the

ground state energy ⟨H⟩ of the electron gas, which is discussed in many-body physics texts.

The result is

E0 = EHF
0 + Ecorr (108)

with EHF
0 the ground state energy calculated in the independent particle approximation with

the Hartree-Fock energy shifts, and Ecorr the correlation energy, defined to be the part of the

g.s. energy not captured by HF. As the density increases, so does εF , which represents the

average kinetic energy per electron; this increase is faster than the increase of the correlation

energy, as

K.E. = 3
5
εF =

2.21

r2s
Ryd (109)

P.E.|HF =
−0.916

rs
Ryd (110)

Ecorr = (0.0622 log rs − 0.096 + . . . ) Ryd (111)

so it is clear the correlation term is less singular than the HF term in the limit rs → 0. At

higher densities, particles are effectively independent.24

2.1.2 Problem with Hartree-Fock theory

Although we argued that the Hartree-Fock approximation becomes a better approximation

in the limit of high density for electrons interacting via the Coulomb interaction, it never

becomes exact, as one can see by examining the Fourier transform of the Hartree-Fock energy

shift. The Hartree term itself (being k independent) is absorbed into a redefinition of the

chemical potential, so the shift is (T=0):
24For a more detailed discus of these terms, see Fetter & Wallecka, Quantum Theory of Many-Particle Systems
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δεk = ± 1

L3

∑
|k′|<kF

4πe2

|k− k′|2
(112)

=
2e2kF
π

F (k/kF ), (113)

where F (x) is a function which has a log divergence in slope at x = 1, i.e. at the Fermi

level.25 This means while the energy shift might be small compared to the Fermi energy the

velocity of an electron is ∂εk/∂k|kF , which contains a term which is infinite.

This problem can be traced back to the long-range nature of the Coulomb force. Two

electrons at large distances r− r′ don’t really feel the full 1/|r− r′|2 but a “screened" version

due to the presence of the intervening medium, i.e. The electron gas rearranges itself to

cancel out the long-range part of V .

2.2 Screening

2.2.1 Elementary treatment

To see how this works, let’s first examine the problem of a single fixed (i.e. infinite mass)

charge placed inside an electron gas. We are interested in how the electron gas responds

to this perturbation (recall in the HF approximation the perturbation would simply be the

interaction of the charge with the uniform gas). But since the electrons are mobile and

negatively charged, they will tend to cluster around the test charge if its charge is positive,

and be repelled (i.e. have a lower density) around the test charge if it is negative. In addition,

Fermi statistics lead to long-range oscillations of the electron charge density far from the

test charge.

This is not entirely a “Gedanken experiment". Impurities in solids may have different

valences from the host, and thus acquire a localized charge, although the entire solid is still

neutral. As an example of some relevance to modern condensed matter physics, consider
25The integral is straightforward & useful:

1

L3

∑
k′

′ 1

(k− k′)2
=

∫ kF

0

k2dk

4π2

∫ 1

−1
dx

1

k2 + k′2 − 2kk′x
=

1

8π2k

∫ kF

0
dk′ k′ log

∣∣∣∣k + k′

k − k′

∣∣∣∣ (114)

=
1

8π2

(
k2F − k2

k
log

∣∣∣∣kF + k

kF − k

∣∣∣∣+ 2kF

)
(115)

so with z = k/kF and (113) we have

F (z) =
1− z2

4z
log

∣∣∣∣1 + z

1− z

∣∣∣∣+ 1

2
(116)
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what happens when you put an extra Oxygen atom in the CuO2 plane of a cuprate high-Tc

superconducting material. Although the crystal structure of these materials is complex, they

all contain CuO2 planes as shown in the figures. The interstitial oxygen will capture two

electrons from the valence band, changing it from a 2s22p4 to a 2s22p6 electronic configura-

tion. The impurity will then have a net charge of two electrons. For r near the impurity, the
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Figure 6: a) The CuO2 plane of cuprate superconductor. b) Interstitial charged O impurity.

electronic charge density will be reduced by the Coulomb interaction. The electronic number

density fluctuation is26

n(r) ≈
∫ εF

−eδϕ(r)
N(ω + eδϕ(r))dω ≈

∫ εF+eδϕ(r)

0

N(ω′)dω′ (117)

Note that this equation involves the double-spin density of states, which we will use through-

out this section. On the other hand, in the bulk far away from the impurity, δϕ(rbulk) = 0,

-e δφ

N(  )ω N(  )ω

ωω

ε
F

ε
F

around impurity bulk

Figure 7: Local repulsion of charge due to shift of electronic density of states near impurity

26A note on signs: the electrostatic potential δϕ(r) < 0 due to the excess negative charge at the impurity. You might worry

about this: the total change in ϕ should include the self-consistently determined positive charge screening the impurity. We have

fudged this a bit, and the correct separation between induced and external quantities will become clear later in the discussion.

Note we take e > 0 always, so the electron has charge −e.
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so

n(rbulk) ≈
∫ εF

0

N(ω)dω (118)

or

δn(r) ≈
∫ εF+eδϕ(r)

0

N(ω)dω −
∫ εF

0

N(ω)dω (119)

Let us assume a weak potential |eδϕ| ≪ εF ; therefore

δn(r) ≈ N(εF ) [εF + eδϕ− εF ] = +eδϕN0 . (120)

We can solve for the change in the electrostatic potential by solving Poisson’s equation.

∇2δϕ = −4πδρ = 4πeδn = 4πe2N0δϕ . (121)

Define a new length k−1
TF , the Thomas-Fermi screening length, by k2TF = 4πe2N0, so that P’s

eqn. is ∇2δϕ = r−2∂rr
2∂rδϕ = k2TF δϕ, which has the solution δϕ(r) = C exp(−kTF r)/r. Now

C may be determined by letting N(εF ) = 0, so the medium in which the charge is embedded

becomes vacuum. Then the potential of the charge has to approach q/r, so C = q, i.e. in

the electron gas

δϕ(r) =
qe−kTF r

r
, (122)

where q = −2e for our example.

Let’s estimate some numbers, by using the free electron gas. Use kF = (3π2n)1/3, a0 =

ℏ2/(me2) = 0.53
◦
A, and N(εF ) = mkF/(ℏ2π2). Then we find

k−2
TF =

a0π

4(3π2n)1/3
≈ a0

4n1/3

k−1
TF ≈ 1

2

(
n

a30

)−1/6

(123)

In Cu, for which n ≈ 1023 cm−3 (and since a0 = 0.53
◦
A)

k−1
TF ≈ 1

2

(1023)
−1/6

(0.5× 10−8)−1/2
≈ 0.5× 10−8 cm = 0.5

◦
A (124)

Thus, if we add a charged impurity to Cu metal, the effect of the impurity’s ionic potential is

exponentially screened away for distances r > 1
2

◦
A. The screening length in a semiconductor

can clearly be considerably longer because n is much smaller, but because of the 1/6 power

which appears in, even with n = 10−10, k−1
TF is only about 150 times larger or 75

◦
A.

What happens in the quantum-mechanical problem of an electron moving in the potential

created by the impurity when the screening length gets long? As shown in the figure, the

potential then correspondingly deepens, and from elementary quantum mechanics we expect

it to be able to bind more electrons, i.e bound states “pop out" of the continuum into orbits

bound to the impurity site.
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Figure 8: Screened impurity potentials. As the density decreases, the screening length increases, so that states

which were extended bound.

In a poor metal (e.g., YBCO), in which the valence state is just barely unbound, decreasing

the number of carriers will increase the screening length, since

k−1
TF ∼ n−1/6 . (125)

This will extend the range of the potential, causing it to trap or bind more states–making

the one free valence state bound. Of course, this has only a small effect O(1/N) effect on the

bulk electrical properties of the material. Now imagine that instead of a single impurity, we

have a concentrated system of such ions, and suppose that we decrease n (e.g. in Si-based

semiconductors, this is done by adding acceptor dopants, such as B, Al, Ga, etc.). This will

in turn, increase the screening length, causing some states that were free to become bound,

eventually possibly causing an abrupt transition from a metal to an insulator. This process

is believed to explain the metal-insulator transition in some amorphous semiconductors.

2.2.2 Kubo formula

Many simple measurements on bulk statistical systems can be described by applying a small

external probe field of some type to the system at t = 0, and asking how the system responds.

If the field is small enough, the response is proportional to the external perturbation, and the

proportionality constant, a linear response coefficient, is given always in terms of a correlation

function of the system in the equilibrium ensemble without the perturbation. In Table 1 I

list some standard linear response coefficients for condensed matter systems.
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System Perturbation Response Coefficient

metal electric field E current j conductivity σ

temp. gradient ∇T heat current jQ thermal cond. κ

point charge q density fluct. δn density correlation func-

tion χc

magnetic field B magnetization M susceptibility χs

The general theory of linear response is embodied in the Kubo formula.27 Suppose a system

is described by a time-independent Hamiltonian H, and a perturbation Ĥ ′(t) is turned on

at time t = 0. The idea is to express the subsequent time-dependence of expectation values

of physical observables in terms of matrix elements of the perturbation in the unperturbed

ensemble. The unperturbed ensemble with Ĥ, or Ĥ − µN̂ , may involve interactions, but we

assume we know the exact energy eigenstates and eigenvalues. All observables can be calcu-

lated by knowing the time evolution of the statistical operator ρ(t), given by the Heisenberg

equation

i
∂ρ̂

∂t
= [Ĥ + Ĥ ′, ρ̂] (126)

First one defines a canonical transformation28:

ρ̃(t) = Ŝ(t)ρ̂(t)Ŝ†; S(t) ≡ eiĤt (127)

from which one can see by substituting into (126) that

i
∂ρ̃

∂t
= [H̃ ′, ρ̃] (128)

with H̃ ′ = ŜĤ ′Ŝ†. This has the formal solution

ρ̃(t) = ρ̃(0)− i

∫ t

0

[H̃ ′, ρ̃]dt′. (129)

The initial condition is ρ̃(0) = Ŝ(0)ρ̂(0)Ŝ(0)† = ρ̂(0), and we can iterate the rhs by substi-

tuting ρ̂(0) for ρ̃(t′) in the integral, etc.29 Since we are interested only in leading order, we

write

ρ̃(t) ≃ ρ̂(0)− i

∫ t

0

[H̃ ′, ρ̂(0)]dt′. (130)

If we now multiply on the left by Ŝ† and on the right by Ŝ, we obtain the leading order in

Ĥ ′ change in the original ρ:

ρ̂(t) ≃ ρ̂(0)− iŜ†(t)

{∫ t

0

[H̃ ′, ρ̂(0)]dt′
}
Ŝ(t), (131)

27R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
28The idea is to remove the “trivial" time-evolution of ρ̂ on Ĥ, to isolate the dependence on Ĥ′.
29Note ρ̂(0) is the initial but still possibly interacting density matrix (statistical operator). I reserve the symbol ρ̂0 for the

noninteracting analog. Note further that ρ̂(0) contains only Ĥ, not Ĥ′, since we assumed perturbation was turned on at t = 0.
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which can now be used to construct averages in the usual way. The expectation value of an

operator Ô at nonzero T and at some time t is

⟨Ô⟩ ≡ Tr(ρ̂(t)Ô) (132)

≃ Tr
(
ρ̂(0)Ô

)
− i

∫ t

0

dt′Tr
(
S†(t)[H̃ ′, ρ̂(0)]Ŝ(t)Ô

)
= Tr

(
ρ̂(0)Ô

)
+ i

∫ t

0

dt′Tr
(
ρ̂(0)[H̃ ′, Õ(t)]

)
, (133)

where in the last step the cyclic property of the trace and the definition of the Heisenberg

operator Õ = ŜÔŜ† was used. The change in the expectation value due to the perturbation

is then

δ⟨Ô⟩ = i

∫ t

0

dt′Tr
(
ρ̂(0)[H̃ ′, Õ(t)]

)
(134)

Since typically Ĥ ′ is proportional to some external (c-number) field, we can write Ĥ ′ as

Ĥ ′(t) =

∫
d3rB̂(r)ϕ(r, t) (so H̃ ′(t) =

∫
d3rB̃(r, t)ϕ(r, t)). More often you will see the Kubo

formula expressed as the change in the expectation value of the operator Â in response to

an applied weak field B̂,

δ⟨Â(1)⟩ = i

∫ t

0

∫
Tr
(
ρ̂(0)[B̃(1′), Ã(1)]

)
ϕ(1′)d1′ (135)

≡
∫ ∞

0

GAB(1, 1
′)ϕ(1′)d1′, (136)

with the notation 1 ≡ r, t, σ, 1′ = r′, t′, σ′,
∫
d1′ ≡

∑
σ′

∫
d3r′dt′, etc., and we defined

GAB(1, 1
′) = GAB(r, t; r

′, t′) ≡ −iTr
(
ρ̂(0)[Ã(r, t), B̃(r′, t′)]

)
θ(t− t′) .30 Remember that the

operators Ã and B̃ are just the Heisenberg t-dependent versions of the Schrödinger operators

Â, B̂.

2.2.3 Correlation functions

As a concrete example, consider the change in the density δn(r, t) of a system in response

to a local change in its density perhaps at a different place and time δn(r′, t′), where n̂(r) =

⟨ψ̂†(r)ψ̂(r)⟩, and ⟨ψ̂†(r)ψ̂(r)⟩Ĥ′=0 = n0. It’s usually convenient to set n0 = 0, i.e. we assume

an overall neutral system. The linear response function is then

χ(r, t; r′, t′) = −i⟨[n̂(r, t), n̂(r′, t′)]⟩Ĥ′=0θ(t− t′), (137)

where the exectation value is taken in the unperturbed system. The function Gnn measures

the average amplitude in the unperturbed ensemble a particle is to be found at r′, t′ and

subsequently at r, t. If the particles are statistically independent, χ factorizes, ⟨nn′⟩ ∼

⟨n⟩⟨n′⟩ = 0 (no correlations), so it has the interpretation of a correlation function.
30The object Tr

(
ρ̂(0)[ÂH(1), B̂H(1′)]

)
which appears on the right-hand side of (134) is related to something called a retarded

2-particle Green’s function, which I have promised not to oppress you with.
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2.2.4 Dielectric constant

The simplest way to analyze this problem conceptually is to ask what is the potential a long

distance from a test charge placed into the interacting electron gas medium. This potential

will be the sum of the bare potential produced by the test charge in a vacuum, plus the

induced potential due to the polarization of the medium.

Let’s use what we learned about linear response in the last section to calculate the electric

potential in the system ϕ(r, t) due to an external potential ϕext(r′, t′) (you may think of this

as the potential due to a test charge if you like). From electrodynamics we recall these two

are supposed to be proportional, and that the proportionality constant is just the dielectric

constant ϵ. By analogy we write, in Fourier transformed language,

ϕext(q, ω) = ϵ(q, ω)ϕ(q, ω) (138)

It is the dielectric constant of the medium (which is directly related to the conductivity)

which we now wish to calculate.

The total potential in the material is the sum of the external potential and the induced

potential,

ϕ = ϕind + ϕext, (139)

but in fact we can calculate the induced potential ϕind by

• first finding the induced change in density δρind due to the external potential, using

linear response theory; then

• using Poisson’s equation to calculate the induced electric potential.

The additional term in the Hamiltonian in the presence of the “test charge" is

Ĥ ′ = e

∫
d3r n̂(r)ϕext(r, t) (140)

where n̂ is the 2nd-quantized density operator ψ̂†ψ̂. The induced change in charge density

δρ = e⟨n̂⟩ is then just given by the Kubo formula as above,31

δρind(1) = −ie2
∫ t

0

∫
d3r′Tr (ρ̂(0)[n̂H(1), n̂H(1

′)])ϕext(1′)d1′ (141)

≡ e2
∫ ∞

0

χ(1, 1′)ϕext(1′)d1′ (142)

where the density-density correlation function is32

χ(1, 1′) = −iTr (ρ̂(0)[n̂H(1), n̂H(1′)]) θ(t− t′). (143)
31Don’t confuse charge density ρ with statistical operator ρ̂.
32Instead of G(2)

nn, it’s more conventional to use the notation χnn or just χ. Note also the notation n̂H , which is the same as

ñ in previous section for time evolution with Hamiltonian H.
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For a translationally invariant system in Fourier transform rep., the convolution (142) reduces

to

δρind(q, ω) = e2χ(q, ω)ϕext(q, ω). (144)

Now using Poisson’s equation q2ϕind = 4πδρind, and Eq. (139), we find33

ϕind(q, ω) =
4πe2

q2
χ(q, ω)ϕext(q, ω) ≡ V (q)χ(q, ω)ϕext (145)

so

ϵ(q, ω) ≡ ϕext(q, ω)

ϕind(q, ω) + ϕext(q, ω)
=

1

1 + V (q)χ(q, ω)
. (146)

2.2.5 Lindhard function

We’ve found the exact structure of the dielectric response,34 but not really solved it because

we still don’t know the density-density correlation function χ. For the interacting system

this can be a very difficult problem, but it is not too hard to find it for the free fermion gas.

We will need

• The definitions of Fourier transforms

χ(q, ω) =

∫
d3(r− r′)

∫
d(t− t′)eiq·(r−r′)e−iω(t−t

′)χ(1, 1′)

c†k(t) =

∫
d3reik·rψ̂†(1)

ck(t) =

∫
d3re−ik·rψ̂(1) (149)

• the integral expression for the theta function

θ(t− t′) = −
∫

dω′

2πi

e−iω
′(t−t′)

ω′ + iη+
, (150)

where η+ is a positive infinitesimal.35

• the solutions of the Heisenberg equation of motion i∂tÔH(t) = [ÔH(t), H] for c†kσ(t) and

ckσ(t) for free fermions (check):

c†kσ(t) = c†kσe
iϵkt (151)

ckσ(t) = ckσe
−iϵkt (152)

33Compare Eq. (121)
34Warning! Compare the treatment here with e.g., A& M pp. 337-340, and you will see that they arrive at the apparently

different result

ϵ(q, ω) = 1− V (q)χ(q, ω), (147)

which is also claimed to be exact. This is because χ is defined to be the response to the total potential

ρind(q, ω) = χ|A&M (q, ω)ϕ(q, ω) (148)

which is very difficult to calculate since ϕ is self-consistently determined.
35The sign of the infinitesimal is important. It determines in which complex half-plane the contour can be completed to

evaluate the integral by Cauchy’s theorem. Check it!
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• The commutator (check!)

[c†k1ck2 , c
†
k3
ck4 ] = δk2k3c

†
k1
ck4 − δk1k4c

†
k3
ck2 (153)

• The expectation values in the noninteracting ensemble of the number operator at finite

temperature T are

⟨n̂k⟩ = f(ϵk), (154)

where f is the Fermi function.

Then (suppressing spin indices)36

⟨[nH(1), nH [1′]⟩ = Tr(ρ̂0[nH(1), nH [1
′])

=
∑

k1...k4

ei(k1−k2)·rei(k3−k4)·r′⟨[c†k1
(t)ck2(t), c

†
k3
(t′)ck4(t

′)]⟩

=
∑

k1...k4

ei(k1−k2)·rei(k3−k4)·r′ei([ϵk3−ϵk4 ]t
′+[ϵk1−ϵk2 ]t)⟨[c†k1

ck2 , c
†
k3
ck4 ]⟩

=
∑
k1k2

ei(k1·[r−r′]+k2·[r′−r])ei(ϵk2−ϵk1 )(t
′−t)⟨n̂k1⟩

−
∑
k3k4

ei(k4·[r−r′]+k3·[r′−r])ei(ϵk3−ϵk4 )(t
′−t)⟨n̂k3⟩ (155)

so that (using (143) and (149), and putting back the spin sum)

χ0(q, ω) =
∑
kσ

f(ϵk)− f(ϵk+q)

ω − (ϵk+q − ϵk) + iη
. (156)

This is the so-called Lindhard function, the charge susceptibility of the free Fermi gas. Note

that in the free gas the major contributions to the integral (156) come from contributions

where ϵk+q− ϵk−ω = 0. These correspond to 2-particle “particle-hole excitations" where the

Fermi sea is given a little energy ω which promotes a particle from below the Fermi surface

(say k) to above (say k + q). In the homework you will investigate when such excitations

are possible within this model.

The use of the free gas susceptibility χ0 for χ in Eq. (146) is a rather poor approximation,

as it completely ignores the effect of the long-range Coulomb interaction on the intermedi-

ate states. The self-consistent field method, or random phase approximation, replaces the

induced charge without interactions with the screened charge:

χ0 ≡
ρind

ϕext

∣∣∣∣
V=0

→ ρind|V=0/ϵ

ϕext
=
χ0

ϵ
. (157)

36The following fermionic identity is also useful–check it!

⟨c†1c2c
†
3c4⟩ = n1n3(δ12δ34 − δ14δ23 + δ14δ23δ12) + n1(δ14δ23 − δ14δ23δ12)
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Solving (146) for ϵ gives

ϵ(q, ω) ≃ 1− V (q)χ0(q, ω) (RPA/SCF ) (158)

This is sometimes called the Lindhard approx. to the dielectric function.

2.2.6 Thomas-Fermi theory

Let us consider the static limit of the theory we currently have. This will allow us to answer

the original question we posed: if we insert a charge somewhere into a metal, what is the net

electrostatic potential felt at some distance r away by a second charge? Taking the ω → 0

limit in (156), we find

χ0(q, 0) =
∑
kσ

f(εk+q)− f(εk)

εk+q − εk + iη+
(159)

First note that if we further take the limit q → 0 we find (here N0 is double-spin dos!)

χ0 → −2
∑
k

−∂f
∂εk

≃ −N0

∫
dξk

−∂f
∂ξk

≃−N0

∫
dξkδ(ξk) = −N0.︷ ︸︸ ︷

T ≪ ϵF (160)

The dielectric constant in the long-wavelength (i.e. small q) limit may thus be written

ϵ(q, 0) ≃ 1 +
4πe2

q2
N0 ≡ 1 +

k2TF
q2

, (161)

where kTF is the same Thomas-Fermi wave vector k2TF ≡ 4πe2N0 we discussed earlier. Now

we go back: if we had placed a charge e in a vacuum, it would have produced a potential

ϕext(r) = e/r, or ϕext(q) = 4πe/q2 everywhere in space. From (138) we see that the actual

potential in the medium is

ϕ(q) = ϕext(q)/ϵ(q) =
4πe/q2

1 + k2TF/q
2
=

4πe

k2TF + q2
, (162)

i.e. the Thomas-Fermi wavevector cuts off the divergence of the bare long-range Coulomb

interaction. In real space

ϕ(r) =
∑
q

eiq·rϕ(q) =
e

r
e−kTF r , (163)

so the long-range interaction is indeed replaced by an exponentially cut off short-range one,

with screening length scale k−1
TF .

2.2.7 Friedel oscillations

The Thomas-Fermi theory is very intuitive and describes realistically how the singularities

of the long-range Coulomb interaction are cut off by screening. It suffices to eliminate the
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anomalies encountered in Hartree-Fock theory of transport and density of states near the

Fermi level. But because it is a long-wavelength approximation, it cannot describe adequately

the response of the electron gas to a short-range perturbation. Our initial example of a

point charge placed in an electron gas was just such a case. To get an accurate description

of the screened impurity potential, the finite-q dependence of the charge susceptibility must

be accounted for. This calculation involves simply replacing our Thomas-Fermi dielectric

function εTF = 1 + k2TF/q
2 with the expression involving the full Lindhard function

εRPA = 1− V (q)χ0(q, ω = 0) = 1 +
k2TF
q2

F (
q

2kF
), (164)

where F is the same function as in (116). Then we repeat the same calculation for the

impurity potential

ϕ(r) =
∑
q

eiq·r
ϕext(q)

1 +
k2TF

q2
F ( q

2kF
)
≃ x2

(2 + x2)2
cos 2kF r

r3
, (165)

where x = kTF/(2kF ). The main interesting feature of this result is of course the fact that

the potential no longer has the simple Yukawa form with exponential decay, but in fact an

oscillatory 1/r3 behavior. The last step in (165) is a bit long,37 but I have attempted to

give you a flavor of it in the homework. One of the main conclusions of the exercise there is

that the potential is very sensitive to the details of the charge susceptibility at 2kF , which

the Thomas-Fermi theory clearly gets wrong. Ultimately Friedel oscillations (and RKKY

oscillations, their counterpart for magnetic spins) originate from the sharpness of the Fermi

surface.

2.2.8 Plasmons

An examination of the dielectric function of the solid, e.g. Eq. (146), shows that the dielectric

function can be zero, meaning the system responds very strongly to a small perturbation

(see Eq. (138). These are the excitation energies of the electron gas. In the random phase

approximation (158) this means there are excitations when

V (q)χ0(q, ω) = 1 (166)

Consider first a finite size box where the energy levels ϵk are discrete. This means χ0(q, ω)

is a sum of terms containing simple poles at the particle-hole excitation energies ωq(k) ≡

ϵk+q− ϵk. χ0 will change sign and diverge as ω passes through these energies, therefore there

will be a solution of (166) for each excitation energy. It is simplest to focus on the limit at
37See e.g. Fetter & Wallecka
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T = 0, where

χ0(q, ω) → −
∑
k<kF

|k+q|>kF

{
1

ω − (ξk+q − ξk) + iη
− 1

ω − (ξk − ξk+q) + iη

}
(167)

In other words, the poles in the complex ω plane are particle-hole excitation energies ±ωk(q) ≡

ξk+q − ξk, where |k+ q| is always above Fermi surface and k always below.38 The situation

is depicted in figure 9. At T = 0, there is a maximum frequency above which there are no

Figure 9: Eigenfrequencies of electron gas in RPA.

more particle-hole excitations possible for given fixed q, i.e. the largest excitation energy

occurs when k = kF and k,q are parallel, so that for a parabolic band, ϵk = k2/(2m),

ωmax =
kF q

m
+

q2

2m
. (168)

38To arrive at this result, note from (156)

χ0(q, ω) =
∑
k

f(ξk)− f(ξk+q)

ω − (ξk+q − ξk) + iη
=

=
∑
k

f(ξk)(1− f(ξk+q))− f(ξk+q)(1− f(ξk))

ω − (ξk+q − ξk) + iη
=

=
∑
k

{
f(ξk)(1− f(ξk+q))

ω − (ξk+q − ξk) + iη
−

f(ξk+q)(1− f(ξk))

ω − (ξk+q − ξk) + iη

}

=
∑
k

{
f(ξk)(1− f(ξk+q))

ω − (ξk+q − ξk) + iη
−

f(ξk)(1− f(ξk−q))

ω − (ξk − ξk−q) + iη

}

=
∑
k

{
f(ξk)(1− f(ξk+q))

ω − (ξk+q − ξk) + iη
−

f(ξ−k)(1− f(ξ−k−q))

ω − (ξ−k − ξ−k−q) + iη

}

=
∑
k

{
f(ξk)(1− f(ξk+q))

ω − (ξk+q − ξk) + iη
−

f(ξk)(1− f(ξk+q))

ω − (ξk − ξk+q) + iη

}

=
∑
k

f(ξk)(1− f(ξk+q))

{
1

ω − (ξk+q − ξk) + iη
−

1

ω − (ξk − ξk+q) + iη

}

lim
T→0

=
∑

k<kF
|k+q|>kF

{
1

ω − (ξk+q − ξk) + iη
−

1

ω − (ξk − ξk+q) + iη

}
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There is another possible root of ϵ, as also shown in Fig. (9). In the limit ω > ωmax, we may

expand (167) for small q, and find

χ0(q, ω) ≃ 2q2

mω2

∑
k<kF

[
1 +

2k · q
mω

+ 3

(
k · q
mω

)2

+ . . .

]

≃ k3F
3π2

q2

mω2

[
1 +

3

5

(
kF q

mω

)2

+ . . .

]
. (169)

Now we look for a solution to ReV χ0 = 1 and find to leading order39

ω = ωpl
(
1 +O(q/kF )

2 + . . .
)
, (170)

with

ωpl =

(
4πne2

m

)1/2

(171)

which is of course the plasma frequency you found by elementary methods last semester.

In contrast to the particle-hole excitations, which involve exciting only 1 particle from its

position in the Fermi sea, a plasma oscillation perforce involves motions of all particles and

is therefore referred to as a collective mode of the system. Plasmons have been observed

indirectly in metals, primarily in thin metallic films.

ω

q

plasmon

particle-hole

continuum

ωpl

Figure 10: Excitations (poles of ϵ(q, ω)−1) at T = 0.

2.3 Fermi liquid theory

In a good metal the average interelectron distance is of the order of or smaller than the range

of the interaction, e.g. the screening length k−1
TF ≈ 0.5 (n/a30)

−1/6, where n is the density, of

order 0.1-1nm for typical parameters. One might therefore expect that interactions should
39Note this is a result for 3 dimensions. It is a useful exercise to obtain the analagous result for 2D, which has ω ∼ q1/2, i.e

a gapless mode.
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strongly modify the picture of free electrons commonly used to describe metals. It turns out,

however, that for T ≪ TF the important degrees of freedom are mostly frozen out, and only

a fraction T/TF of all electrons near the Fermi surface participate in interaction processes.

This leads to the possibility of a mapping between the free Fermi gas and the interacting

Fermi system. IF the elementary excitations of the many-body system can be obtained from

the single-particle states of the free electron gas by turning on the interaction adiabatically

(and if the ground state has the full symmetry of the Hamiltonian), the distribution function

nkσ of the interacting system would be the same as that of a free gas, and the particle and

hole excitations of the gas would evolve into “quasiparticle" and “quasihole" states.

ε k

b)

n
k

0

kk
F

Fermi gas               Fermi liquid

a)

ε k
0

c)

c
k

kk
F

c
k< >

Figure 11: a) Evolution of quasiparticle states; b) T = 0 Quasiparticle distribution function n0
k; c) T = 0

true electron distribution function ⟨c†kck⟩.

2.3.1 Particle-hole excitations

To understand what this really means, let’s go back and review the definitions of the terms

particles and holes. Let’s take N free Fermions, mass m in a volume L3, where we know that

the eigenstates are Slater determinants of N different single particle states, each given by

ψk(r) =
1√
L3
eik·r. (172)

Let’s stick to T = 0 for the moment, and recall that the occupation of each state is given by

nk = θ(kF − k), where kF is the radius of the Fermi sea.

Now let’s add one “test" particle to the lowest available state k = kF . We then have for

the chemical potential at T = 0,

µ = E0(N + 1)− E0(N) =
∂E0

∂N
=
k2F
2m

. (173)

Particles and holes are excitations of the filled Fermi sea. Excitations of the gas consist of

taking a certain number of particles and moving them to the other side of the Fermi surface,

yielding particles above and an equal number of holes below the Fermi surface. These
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excitations can be described in terms of the changes in the particle occupation numbers

δnp = np − n0
p:

δnk =

 δk,k′ for a particle k′ > kF

−δk,k′ for a hole k′ < kF
. (174)

At nonzero temperatures, a thermal fluctuation will create changes in occupation numbers

E

N(E)

E
F

δn k =-1

particle ex.

hole ex.

nδ =1
k'

Figure 12: Particle and hole excitations of the Fermi gas.

δnp ∼ 1 only for excitations of energy within kBT of εF . Note that the total energy of the

free gas is completely specified as a functional of the occupation numbers:

E − E0 =
∑
k

k2

2m
(nk − n0

k) =
∑
k

k2

2m
δnk . (175)

Now take the gas and put it in contact with a particle reservoir. The appropriate ther-

modynamic potential is then the Gibbs free energy, which for T = 0 is F = E − µN , and

F − F0 =
∑
k

(
k2

2m
− µ

)
δnk ≡

∑
k

ξkδnk . (176)

The free energy of one particle, with momentum k and occupation δnk′ = δk,k′ is ξk and it

corresponds to an excitation outside the Fermi surface. The free energy of a hole δnk = −δk,k′

is −ξk, which corresponds to an excitation below the Fermi surface. For both species then

the free energy of an excitation is |ξk| , which is always positive; ie., the Fermi gas is stable

with respect to excitations as it must be.

2.3.2 Quasiparticles and quasiholes in interacting system

Consider a system with interacting particles an average spacing a apart, so that the typical

interaction energy is e2

a
e−a/rTF . As discussed above, we now suppose that we can create this

system by turning on the interactions adiabatically starting from the free gas in a time t,

such that the system evolves while staying always in its ground state.
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If a state of the ideal system is characterized by the distribution n0
k, then the state

of the interacting system will evolve adiabatically from n0
k to nk. In fact if the system

remains in its ground state, then n0
k = nk, i.e. the occupation of each state labelled by k

won’t change (although the energy will). This is an assumption, and we will be studying

some counterexamples to this ansatz (superconductivity and magnetism). But in general

Landau expected this to hold if the symmetry of the interacting system was the same as the

noninteracting one, and this appears to be the case for simple metals.

Let’s follow what happens to a particle of momentum k added to the top of the non-

interacting Fermi gas when we slowly turn the interaction knob. As U increases, two things

k

k

k

t=0

U=0

t= t

U=
e

2

a
e
-kTF

aturn on interactions

Figure 13: Evolution of particle in state k on top of Fermi sea as interaction is turned on. Particle becomes

“dressed" by interactions with the rest of the system which changes the effective mass but not the momentum

of the excitation (“quasiparticle").

happen. The k state of the original particle is no longer an eigenstate of H, so it decays into

the new excitations of the system, which according to our ansatz are also single-particle-like.

Nearby particles also decay into the original state; this mixing has the effect of “dressing"

the original free particle with a “cloud" of excitations of the surrounding system. However

since momentum is conserved, the net excitation (called a quasiparticle)) can still be labelled

with original momentum k. In the same way, holes of momentum k below the Fermi surface

evolve into quasiholes. Occasionally an analogy from classical mechanics is useful: we think

of a bullet being fired into a large container filled with cotton. It will drag some cotton with

it, and create a “particle+cloud" with increased mass but the same momentum.

It is too much to hope that the interactions between quasiparticles will vanish altogether.

The N -particle ground state wave-function may still be Slater-determinant like, but this

doesn’t necessarily imply that the quasiparticles are infinitely long-lived (exact) eigenstates

of the system. So if each quasiparticle state k has lifetime τk, we have to worry a bit about
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the adiabatic switching on procedure if τk < t. If so, the quasiparticle will decay before

we finish switching, and we won’t be able to go reversibly back and forth. If we decrease t

too much so again τk ≫ t, then the switching on of U may not be adiabatic, i.e. we may

knock the system into a state other than its ground state. It was Landau’s great insight

to recognize that these objections are overcome for quasiparticle states sufficiently close to

the Fermi energy. In this case the Pauli principle strongly restricts the decay channels for a

quasiparticle, and one can argue (see below) that the lifetime becomes infinite at the Fermi

energy itself. Therefore for any time t there should be a narrow range of energies near the

Fermi surface for which the τk is long enough to make the whole construction work.

2.3.3 Energy of quasiparticles.

As in the free gas, excitations will be characterized only by the deviation of the occupation

number from the ground state occupation n0
k.40

δnk = nk − n0
k (177)

(I hide the spin index for now). At suffiently low temperatures δnk ∼ 1 only for those

excitations near the Fermi surface where the condition τk ≫ t is satisfied. Therefore we

should be able to formulate a theory which depends only on δnk, not on nk or n0
k, which are

not well defined for k far from the Fermi surface. nk and n0
k should never enter independently

and are not physically relevant.

For the noninteracting system the dependence of the energy (T = 0) E on δnk is very

simple:

E − E0 =
∑
k

k2

2m
δnk . (178)

In the interacting case E[nk] is more complicated generally, but if we take δnk to be small

(just a few excitations above the ground state) then we may expand:

E[nk] = Eo +
∑
k

ϵkδnk +O(δn2
k) , (179)

where we now define ϵk = δE/δnk. If δnk = δk,k′ , then E ≈ E0 + ϵk′ ; i.e., the energy of the

quasiparticle with momentum k′ is ϵk′ .

As discussed, we will only need ϵk near the Fermi surface where δnk is O(1). So we may

expand ϵk around the Fermi level,

ϵk ≈ µ+ (k− kF ) · ∇k ϵk|kF (180)
40Note we will now take over the notation n0

k which in the previous discussion meant the distribution function of the

noninteracting system. Now it means the ground state of the interacting system.
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where ∇kϵk = vk, the group velocity of the quasiparticle. We no longer know the exact form

of ϵk, but some exact relations must be obeyed because our system obeys certain symmetries.

If we explicitly put the spin-dependence back in, we have symmetries

ϵk,σ = ϵ−k,−σ time-reversal (181)

ϵk,σ = ϵ−k,σ parity (182)

So unless we explicitly break T -symmetry by e.g. applying a magnetic field, we have ϵk,σ =

ϵ−k,σ = ϵk,−σ. Furthermore, as usual ϵk has to respect the point and space group symmetries

of the system, e.g. for an isotropic system ϵk depends only upon the magnitude of k,

|k|, so k and vk = ∇ϵk(|k|) = k̂(dϵk/dk) are parallel.41 Define (m∗)−1 as the constant of

proportionality at the Fermi surface42

vkF = kF/m
∗ (183)

Then for the interacting system at the Fermi surface

Ninteracting(εF ) =
m∗kF
π2

, (184)

the same form as for the noninteracting system. Note the m∗ (usually but not always > m)

accounts for the dressing of the quasiparticle particle (bullet + cotton!). In other words, as

far as the density of levels at the Fermi energy is concerned, the only thing which changes is

the effective mass of the fermionic single-particle excitations.

2.3.4 Residual quasiparticle interactions

Let’s go back to the Gibbs free energy of our system of quasiparticles characterized in some

generalized excited state by distribution function δnk:

F − F0 = E − E0 − µ(N −N0) . (185)

where again F0, E0 etc. characterize the ground state. Thus,

N −N0 =
∑
p

δnk , (186)

and since

E − E0 ≈
∑
k

ϵkδnk +O(δn2) , (187)

we get

F − F0 ≈
∑
k

(ϵk − µ) δnk =
∑
k

ξkδnk +O(δn2) . (188)

41For a cubic system ϵk is invariant under 90◦ rotations, etc.
42Note kF is not changed by interactions (Luttinger’s theorem for isotropic system)
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As shown in Fig. 14, we will be interested in excitations of the system which deform the

Fermi surface by an amount proportional to δ. For example, suppose that along the positive

kx axis, our excited system has δnk = 1 for some states k above kF , whereas along the

negative kx axis some states have δnk = −1. The approximation to the free energy above

kx

ky

Figure 14: Small deformations of the Fermi sphere, proportional to δ.

will remain valid provided

δ ≡ 1

N

∑
k

|δnk| ≪ 1 . (189)

If we stick with our original criterion of using only states near the Fermi surface to construct

our distortion, the ξk for those states with δnk ̸= 0 will also be of order δ. Thus,∑
k

ξkδnk ∼ O(δ2) , (190)

so in order to keep terms of order δ2 consistently we must also add the next term in the

Taylor series expansion of the energy :

F − F0 =
∑
k

ξkδnk +
1

2

∑
k,k′

fk,k′δnkδnk′ +O(δ3) (191)

where

fk,k′ =
δE

δnkδnk′
(192)

The term proportional to fk,k′ , was proposed by L.D. Landau. It describes the residual

interactions of the quasiparticle excitations which remain even after they are “dressed". A

glance at the dimensions of the new term shows that fk,k′ ∼ 1/V . But if fk,k′ is an interaction

between quasiparticles, each of which (in plane-wave like state) is delocalized over the whole

47



volume V , so the probability that two will interact is roughly ∼ k−3
TF/V . Therefore

fk,k′ ∼ k−3
TF/(N0V ) (193)

We can proceed as earlier with the quasiparticle energy ϵk and ask how this unknown

interaction function reflects the underlying symmetries of the physical system. To this end

we reintroduce the hidden spin degrees of freedom. First in the absence of an external

magnetic field, the system should be invariant under time-reversal, so

fkσ,k′σ′ = f−k−σ,−k′−σ′ , (194)

and, in a system with reflection symmetry (parity)

fkσ,k′σ′ = f−kσ,−k′σ′ . (195)

Then since this implies

fkσ,k′σ′ = fk−σ,k′−σ′ . (196)

it must be that f depends only upon the relative orientations of the spins σ and σ′, so there

are only two independent components for given k,k′, e.g. fk↑,k′↑ and fk↑,k′↓. It is more

conventional to decompose f into spin-symmetric and antisymmetric parts:

fak,k′ =
1

2
(fk↑,k′↑ − fk↑,k′↓) f sk,k′ =

1

2
(fk↑,k′↑ + fk↑,k′↓) . (197)

fak,k′ may be interpreted as an exchange interaction, or

fkσ,k′σ′ = f sk,k′ + σσ′fak,k′ . (198)

where σ and σ′ are the spins of the quasiparticles with momentum k and k′, respectively.

The next important assumption entering Fermi liquid theory is that the quasiparticle

interactions are short-ranged. This means that fkk′ is essentially constant as a function of

|⃗k|, |⃗k′|, and so depends only on the directions k̂, k̂′, f s,akk′ ≃ f(k̂, k̂′):

fk,k′ ≃ fk,k′ |ϵk=ϵk′=µ (199)

or equivalently, only on the angle θ between them!

fαk,k′ =
∞∑
l=0

fαl Pl(cos θ) . (200)

Conventionally these f parameters are expressed in terms of dimensionless quantities.

N0f
α
l =

m∗kF
π2

fαl = Fα
l . (201)

We expect that the Landau parameters F s,a
ℓ will be negligible for sufficiently large ℓ, so we

have now achieved our goal of subsuming the complicated effects of interactions in a few

phenomenological parameters.
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2.3.5 Local energy of a quasiparticle

Now consider an interacting system with a certain distribution of excited quasiparticles

δnk′ . Let’s add another particle, say of momentum k and see how the energy changes. The

distribution function goes from (δn′
k → δn′

k + δk,k′). From Eq. 191 the free energy of the

additional quasiparticle is

ξ̃k = ξk +
∑
k′

fk′,kδnk′ , (202)

(since fk′,k = fk,k′). The second term on the right corresponds to the average interaction of

a quasiparticle with the other quasiparticles in the system.43

Substituting (200) and (201) in (202) gives the shift in energy of a quasiparticle due to

the Landau interaction

δξkσ ≡ ξ̃k − ξk =
1

N0

[F s
0 δn+ σF a

0 δns +
1

k2F
F s
1 k⃗ · g⃗ + ...], (203)

where δn =
∑

kσ δnkσ is the density shift, δns =
∑

kσ σδnkσ is the spin density shift, and

g⃗ =
∑

kσ k⃗δnkσ is the momentum density. The first two terms can be thought of as molecular

field couplings representing the average effect of density and magnetization fluctuations in the

surrounding medium on the quasiparticle energy. The third term is the famous “backflow"

term which describes the effect of the quasiparticle streaming through the medium to which

it couples. The flow pattern is of dipolar form, as depicted in Figure 15. Note that the

Landau parameter F s
1 and m∗ are not completely independent, but one has (in the Galilean

invariant liquid case ONLY) m ∗ /m = 1+ F s
1 /3. In a crystal this relation does not hold.44

k

Figure 15: Schematic of backflow around quasiparticle of momentum k

Before leaving this section, let me just mention that the importance of the local quasipar-

ticle energy ξ̃ or rather the energy shift δξ̃ is that when one writes down how external forces
43The structure may remind you of Hartree-Fock theory, to which it is similar, but keep in mind f is the residual interaction

between quasiparticles, not electrons
44For an extensive discussion of this and many other aspects of FL theory I’ve glossed over, see G. Baym and C. Pethick,

Landau Fermi-Liquid Theory : Concepts and Applications, Wiley 1991
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couple to the system to determine, e.g. transport properties, it is the gradient of ξ̃k which

is the force a qp of momentum k experiences due to spatial inhomogeneities in the system.

There is a "Landau molecular field" proportional to

−∇δ̃ξk = −∇
∑
k′

fk′kδnk′(r) (204)

which is responsible, e.g. for spin waves in spin polarized dilute gases. Eq. (204) is a

simplified version of Landau’s famous kinetic equation for a Fermi liquid which is the analog

of the Boltzman equation for a weakly interacting gas.

2.3.6 Thermodynamic properties

The expression (203) for the quasiparticle energies and the fact that the equilibrium quasi-

particle distribution function is just the Fermi function enables immediate calculations of

thermodynamic observables in the Fermi liquid. Because the states of the gas and liquid are

in one to one correspondence, for example, one immediately knows that the expression for

the entropy of the liquid is the same as that for a free Fermi gas,45

S = −
∑
kσ

[nkσ log nkσ + (1− nkσ) log(1− nkσ)]. (205)

Note now that the distribution function nkσ in local equilibrium must be a Fermi function

evaluated at energy ϵkσ given by the bare energy plus the expression (202) in general. How-

ever, we are interested in calculating a quantity in global equilibrium, in which case the shifts

δn, δns, g⃗, ... vanish. In this case the calculation reduces to the usual one for a free Fermi

gas. For temperatures T ≪ TF we replace the sum
∑

kσ by N0

∫
dξ . The temperature can

then be scaled out, and the remaining integral performed, yielding the entropy density at

low temperatures,

s =
1

3
π2N0T, (206)

and the specific heat at constant volume is therefore C = T (∂s/∂T )V = (m∗kF/3)T , where

in the last step we have used N0 = m∗kF/π
2. The result for the liquid is identical to that

for the gas, with the exception of the replacement of m by m∗.

Similarly, we may derive an expression for the spin susceptibility of the Fermi liquid by

constructing the magnetization δns as above, and noting that the shift in the distribution

function is due to the Landau shift in the quasiparticle energy (molecular field) as well as

the external field H⃗:
45Recall the form of the Fermi distribution function for the free gas is obtained purely from statistical considerations, not from

any knowledge of the energies. Similarly the Fermi surface derivative ∂nkσ/∂ϵkσ is a delta function as in the noninteracting

case since there is a discontinuity at kF .

50



δnkσ =
∂nkσ
∂ϵkσ

(δϵkσ − µ0σH). (207)

Using δns ≡
∑

kσ σδnkσ, and noting that since σ∂n/∂ϵ is isotropic and odd in σ, only

the ℓ = 0, spin-antisymmetric part of δϵkσ contributes to the sum, we find for the spin

susceptibility χ = µ0(∂ns/∂H)

χ =
µ2
0N0

(1 + F a
0 )

=
m∗/m

1 + F a
0

χ0, (208)

where χ0 is the susceptibility of the free gas. Remember N0 here is the renormalized DOS

including m∗, not m.

2.3.7 Quasiparticle relaxation time and transport properties.

Calculations of transport properties require introducing the quasiparticle lifetime. Recall

the quasiparticle states are not eigenstates of the many-body Hamiltonian, due to the weak

residual interactions among them. We therefore expect a quasiparticle with momentum k⃗ to

decay except when it sits exactly at the Fermi surface and when T = 0, when it can easily

be seen there is no phase space for scattering which conserves energy and momentum. But

relaxing these conditions (k⃗ not on FS, T ̸= 0) allows phase space for scattering and hence

a finite lifetime. Since the interactions among quasiparticles are assumed weak, we may use

a golden rule type formula for the scattering rate"

ky

kx
2

4

1
3

V

Figure 16: 2-quasiparticle collision: states before (1,2) and after (3,4)

Let’s consider a quasiparticle with energy ξ1 = ϵ1 − µ above the Fermi level. A scattering

process takes it to final state ξ3, and to conserve energy and momentum a quasiparticle with

energy ξ2 must be scattered to final state ξ4. I’ve assumed the interaction V is independent
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of momentum, frequency, etc. because the most important effects we are looking for are

purely statistical, unless V is very singular.46 The "golden rule" then gives

1

τ1
= 2π

∫
dξ2N(ξ2)

∫
dξ3N(ξ3)

∫
dξ4N(ξ4)|V |2f(ξ2)(1− f(ξ3))(1− f(ξ4))δ(ξ1 + ξ2 − ξ3 − ξ4) ≃

≃ 2πN3
0 |V 2|

∫ ξ1

0

dξ3

∫ ξ1−ξ3

0

dξ4 = πN3
0 |V |2ξ21 ,

where the delta function conserves energy and the Fermi factors ensure that there is a particle

in state 2 and that states 3 and 4 are empty beforehand. For simplicity I evaluated the Fermi

functions at T=0, giving the final simple result. Note I have neglected spin for the moment,

but this is not essential.47 Note now that for N0V ≪ 1 (weak residual interactions) and

N0 ∼ 1/εF , it is clear that for ξ ≪ εF the scattering satisfies the condition

1

τ1
≪ ξ. (209)

This means that the quasiparticle states are well-defined near the Fermi surface, since their

damping is small compared to the energy of the state. ( As expected, the relaxation rate ex-

actly at the Fermi surface vanishes identically.) We therefore expect that Fermi liquid theory

calculations in terms of a weakly interacting quasiparticle gas will be valid for frequencies

and temperatures such that ω, T ≪ εF .

Two further comments about the scattering rate are of potential importance. First, I give

without proof the full result at finite temperatures:48

1

τ(ξ)
=
π|V |2

64ε3F
[(πT )2 + ξ2], (211)

so that at finite T one finds that 1/τ varies as T 2 or ξ2, whichever is larger. Certain simple

transport properties in a Fermi liquid reflect this directly. For example, the resistivity due

to electron-electron scattering in a metal goes as T 2 at the lowest temperatures; it is usually
46In the case of the Coulomb interaction, which is very singular, screening takes care of this problem. See section 2.2.6
47What I have done which is not really Kosher, however, is to neglect the constraints placed on the scattering by momentum

conservation. It turns out in three dimensions this is not terribly important, and one obtains the correct answer. It is a useful

exercise to convince yourself, for example, that in 2D the relaxation rate goes like ξ2 log ξ.
48Our simple calculation has to be modified to account for momentum conservation, expressed as

k1 − k3 = k4 − k2 . (210)

Since ξ1 and ξ2 are confined to a narrow shell around the Fermi surface, so too are ξ3 and ξ4. This can be seen in Fig. 16, where

the requirement that k1 − k3 = k4 − k2 limits the allowed states for particles 3 and 4. Taking k1 fixed, allowed momenta for

2 and 3 are obtained by rotating k1 − k3 = k4 − k2; this rotation is constrained, however, by the fact that particles cannot

scatter into occupied states. This restriction on the final states reduces the scattering probability by a factor of ξ1/εF , but is

the same restriction contained in the calculation above. Thus momentum conservation doesn’t affect our T = 0 estimate above,

except to modify the prefactor.

If these hand-waving arguments don’t satisfy you (they shouldn’t), see AGD or Fetter/Wallecka.
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masked by other, larger sources of scattering in ordinary metals, however.49 The second

remark is that if one were to find, for some microscopic model, that the relaxation rate was

larger than the quasiparticle energy, the quasiparticles would be overdamped and the entire

concept would be useless. One would then speak of an incoherent or "non-Fermi liquid"

system. If, on the other hand, one found that 1/τ were to scale precisely with max(ξ, T )

(instead of max(ξ2, T 2)), the quasiparticles would be in a certain sense critically damped,

i.e. not quite well defined, but not completely washed out either. This is what is frequently

referred to as a "marginal Fermi liquid".[MFL]

2.3.8 Effective mass m∗ of quasiparticles

Here I give a quick derivation of the relation between the Landau parameter F1s which

appears in the current and the effective mass m∗.

The net momentum of the volume V of quasiparticles is

Pqp = 2V
∑
k

knk, net quasiparticle momentum (212)

also the total momentum of the Fermi liquid. Since the number of particles equals the

number of quasiparticles, however, the quasiparticle and particle currents must also be equal

Jqp = Jp = 2V
∑
k

vknk net quasiparticle and particle current (213)

or, since the momentum is just the particle mass times this current

Pp = 2V m
∑
k

vknk net quasiparticle and particle momentum (214)

where vp = ∇k ϵ̃k, is the velocity of the quasiparticle. So∑
k

knk = m
∑
k

∇k ϵ̃knk (215)

Let’s consider an arbitrary variation of nk, and remember that ϵ̃k depends on nk, so that

δϵ̃k = 2V
∑
k

fk,k′δnk′ . (216)

For Eq. 215, this means that∑
k

kδnk = m
∑
k

∇k ϵ̃kδnk (217)

+m2V
∑
k

∑
k′

∇k (fk,k′δnk′)nk ,

49Of course this is not quite right. The electron-electron interactions in a solid conserve crysal momentum, and thus the

conductivity of a pure crystal would be infinite at any temperature unless one explicitly accounts for Umklapp processes. Thus

it is not true for the electrical conductivity that σ ∝ τ , with τ the 1-particle lifetime due to electron-electron interactions.

However the Umklapp processes do also provide a transport rate varying as T 2, so one often hears the not quite correct remark

that the scattering rate in a Fermi liquid varies as T 2, therefore so does the resistivity ρ.
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or integrating by parts (and renaming k → k′ in the last part), we get∑
k

k

m
δnk =

∑
k

∇k ϵ̃kδnk (218)

−2V

∫ ∑
k,k′

δnkfk,k′∇k′nk′ ,

The usual variational argument says that since δnk is arbitrary, we must have that the

integrands are equal
k

m
= ∇kϵ̃k − 2V

∑
k′

fk,k′∇k′nk′ (219)

At T = 0 ∇k′nk′ = −k̂′δ(k′ − kF ). The integral may now be evaluated by using the system

isotropy in k space, and choosing k parallel ẑ. As we mostly concerned with Fermi surface

properties we take k = kF , and let θ be the angle between k (or the z-axis) and k′, and

finally note that on the Fermi surface |∇k ϵ̃k|k=kF = vF = kF/m
∗. Thus,

kF
m

=
kF
m∗ + 2V

∫
k′2dkdΩ

(2πℏ)3
fk,k′ k̂ · k̂′δ(k′ − kF ) (220)

However, since both k and k′ are restricted to the Fermi surface k̂′ = cos θ, and evaluating

the integral over k, we get

1

m
=

1

m∗ + 2V kF

∫
dΩ

(2πℏ)3
fk,k′ cos θ , (221)

If we now sum over (hidden) spins only the symmetric part of f appears

1

m
=

1

m∗ +
4πV kF
(2πℏ)3

∫
d (cos θ) f s(θ) cos θ , (222)

Now use decomposition (200), orthonormality of Legendre polynomials, and def. of Landau

parameters:

(223)

fα(θ) =
∑
l

fαl Pl(cos θ) , (224)∫ 1

−1

dxPn(x)Pm(x)dx =
2

2n+ 1
δnm (225)

V N0f
α
l =

V m∗kF
π2ℏ3

fαl = Fα
l , (226)

we find that
1

m
=

1

m∗ +
F s
1

3m∗ , (227)

or m∗/m = 1 + F s
1 /3.

So effective mass and F1s aren’t independent, at least in a Galilean invariant system where

(213) holds.
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3 Quantum Magnetism

The main purpose of this section is to introduce you to ordered magnetic states in solids and

their “spin wave-like" elementary excitations. Magnetism is an enormous field, and reviewing

it entirely is beyond the scope of this course.

3.1 Introduction

3.1.1 Atomic magnetic Hamiltonian

The simplest magnetic systems to consider are insulators where electron-electron interactions

are weak. If this is the case, the magnetic response of the solid to an applied field is given

by the sum of the susceptibilities of the individual atoms. The magnetic susceptibility is

defined by the the 2nd derivative of the free energy,50

χ = − ∂2F

∂H2
. (228)

We would like to know if one can understand (on the basis of an understanding of atomic

structure) why some systems (e.g. some elements which are insulators) are paramagnetic

(χ > 0) and some diamagnetic (χ < 0).

The one-body Hamiltonian for the motion of the electrons in the nuclear Coulomb potential

in the presence of the field is

Hatom =
1

2m

∑
i

(
pi +

e

c
A(ri)

)2
+
∑
i

V (ri) + g0µBH · S, (229)

where
∑

i Si is the total spin operator, µB ≡ e/(2mc) is the Bohr magneton, g0 ≃ 2 is the

gyromagnetic ratio, and A = −1
2
r×H is the vector potential corresponding to the applied

uniform field, assumed to point in the ẑ direction. Expanding the kinetic energy, Hatom may

now be expressed51 in terms of the orbital magnetic moment operator L =
∑

i ri × pi as

Hatom =
∑
i

p2
i

2m
+
∑
i

V (ri) + δH, (230)

δH = µB(L+ g0S) ·H+
e2

8mc2
H2
∑
i

(x2i + y2i ). (231)

Given a set of exact eigenstates for the atomic Hamiltonian in zero field |n⟩ (ignore degen-

eracies for simplicity), standard perturbation theory in δH gives

δEn = −H · ⟨n|µ⃗|n⟩+
∑
n ̸=n′

| ⟨n|H · µ⃗|n′⟩|2

En − En′
+

e2

8mc2
H2⟨n|

∑
i

(x2i + y2i )|n⟩, (232)

50In this section I choose units such that the system volume V = 1.
51To see this, it is useful to recall that it’s ok to commute r and p here since, in the cross product, pz acts only on x, y, etc.
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where µ⃗ = −µB(L + g0S). It is easy to see that the first term dominates and is of order

the cyclotron frequency ωc ≡ eH/(mc) unless it vanishes for symmetry reasons. The third

term is of order ωc/(e2/a0) smaller, because typical electron orbits are confined to atomic

sizes a0, and is important in insulators only when the state |n⟩ has zero magnetic moment

(L = S = 0). Since the coefficient of H2 is manifestly positive, the susceptibility52 in the

µ = 0 ground state |0⟩ is χ = −∂2δE0/∂H
2, which is clearly < 0, i.e. diamagnetic.53

In most cases, however, the atomic shells are partially filled, and the ground state is deter-

mined by minimizing the atomic energy together with the intraatomic Coulomb interaction

needed to break certain degeneracies, i.e. by “Hund’s rules".54 Once this ground state (in

particlular the S, L, and J quantum numbers is known, the atomic susceptibility can be

calculated. The simplest case is again the J = 0 case, where the first term in (232) again

vanishes. Then the second term and third term compete, and can result in either a dia-

magnetic or paramagnetic susceptibility. The 2nd term is called the Van Vleck term in the

energy. It is paramagnetic since its contribution to χ is

χV V = −∂
2E0|2nd term
∂H2

= 2µ2
B

∑
n

|⟨0|µ⃗|n⟩|2

En − E0

> 0. (233)

3.1.2 Curie Law-free spins

In the more usual case of J ̸= 0, the ground state is 2J + 1 degenerate, and we have to

be more careful about defining the susceptibility. The free energy as T → 0 can no longer

be replaced by E0 as we did above. We have to diagonalize the perturbation δH in the

degenerate subspace of 2J +1 states with the same J but different Jz. Applying a magnetic

field breaks this degeneracy, so we have a small statistical calculation to do. The energies of

the “spin" in a field are given by

H = −µ⃗ ·H, (234)
52If the ground state is nondegenerate, we can replace F = E − TS in the definition of the susceptibility by the ground state

energy E0.
53This weak diamagnetism in insulators with filled shells is called Larmor diamagnetism
54See A&M or any serious quantum mechanics book. I’m not going to lecture on this but ask you about it on homework.
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and since µ⃗ = −γJ within the subspace of definite J2,55 the 2J +1 degeneracy which existed

at H = 0 is completely broken. The free energy is56

F = −T logZ = −T log
J∑

Jz=−J

eβγHJz

= −T log

[
eβγH(J+1/2) − e−βγH(J+1/2)

eβγH/2 − e−βγH/2

]
, (235)

so the magnetization of the free spins is

M = − ∂F

∂H
= γJB(βγJH), (236)

where B(x) is the Brillouin function

B(x) =
2J + 1

2J
coth

2J + 1

2J
x− 1

2J
coth

1

2J
x. (237)

Note I defined γ = µBg. We were particularly interested in the H → 0 case, so as to

compare with ions with filled shells or J = 0; in this case one expands for T >> γH, i.e.

cothx ∼ 1/x+ x/3 + . . . , B(x) ≃ (J + 1)x/(3J) to find the susceptibility

χ = − ∂2F

∂H2
=
γ2J(J + 1)

3T
, (238)

i.e. a Curie law for the high-temperature susceptibility. A 1/T susceptibility at high T is

generally taken as evidence for free paramagnetic spins, and the size of the moment given

by µ2 = γ2J(J + 1).

3.1.3 Magnetic interactions

The most important interactions between magnetic moments in an insulator are electrostatic

and inherently quantum mechanical in nature. From a classical perspective, one might expect
55This is not obvious at first sight. The magnetic moment operator µ⃗ ∝ L̂ + g0Ŝ is not proportional to the total angular

momentum operator Ĵ = L̂+ Ŝ. However its matrix elements within the subspace of definite L, S, J are proportional, due to the

Wigner-Eckart theorem. The theorem is quite general, which is of course why none of us remember it. But in it’s simpler, more

useful form, it says that the matrix elements of any vector operator are proportional to those of the total angular momentum

operator J. You need to remember that this holds in a basis where atomic states are written |JLSJz⟩, and that "proportional"

just means

⟨JLSJz |V⃗ |JLSJ ′
z⟩ = g(JLS)⟨JLSJz |J⃗ |JLSJ ′

z⟩,

where V⃗ is some vector operator. In other words, within the subspace of definite J, L, S but for arbitrary Jz , all the matrix

elements ⟨Jz |V⃗ |J ′
z⟩ are = g⟨Jz |J⃗ |J ′

z⟩, with the same proportionality const. g, called the Landé g-factor.

Obviously µ⃗ = L+ g0S is a vector operator since L and S are angular momenta, so we can apply the theorem. If J = 0 but

L, S are not (what we called case II in class) it is not obvious at first sight that term 1 in Eq. (232) ∝ ⟨0|µz |0⟩ vanishes since

our basis states are not eigenstates of Lz and Sz . But using the WE theorem, we can see that it must vanish. This means

for the case with ground state J = 0, L, S ̸= 0, terms 2 and 3 in Eq. (232) indeed compete. Examine the matrix element in

the numerator of 2 (van Vleck) in Eq. (232): while the ground state ⟨0| is still ⟨J = 0LSJz = 0| on the left, the sum over the

excited states of the atom |n′⟩ on the right includes other J ’s besides zero! Thus the WE theorem does not apply. [for a more

complete discussion, see e.g. Ashcroft and Mermin p. 654.]
56Geometric series with finite number of terms:

∑N
n=0 x

n = 1−xN

1−x
.
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Figure 17: Dimensionless Brillouin fctn.

two such moments to interact via the classical dipolar force, giving a potential energy of

configuration of two moments µ⃗1 and µ⃗2 separated by a distance r of

U =
µ⃗1 · µ⃗2 − 3(µ⃗1 · r̂)(µ⃗2 · r̂)

r3
(239)

Putting in typical atomic moments of order µB = eℏ/mc and distances of order a Bohr

radius r ∼ a0 = ℏ2/me2, we find U ≃ 10−4eV , which is very small compared to typical

atomic energies of order eV . Quantum-mechanical exchange is almost aways a much larger

effect, and the dipolar interactions are therefore normally neglected in the discussions of

magnetic interactions in solids. Exchange arises because, e.g., two quantum mechanical

spins 1/2 (in isolation) can be in either a spin triplet (total S = 1), or singlet (total S = 0).

The spatial part of the two-particle wavefunctions is antisymmetric for triplet and symmetric

for singlet, respectively. Since the particles carrying the spins are also charged, there will be

a large energetic difference between the two spin configurations due to the different size of the

Coulomb matrix elements (the “amount of time the two particles spend close to each other")

in the two cases.57 In terms of hypothetical atomic wave functions ψa(r) and ψb(r) for the two

particles, the singlet and triplet combinations are ψ 0
1
(r1, r2) = ψa(r1)ψb(r2) ± ψa(r2)ψb(r1),

57Imagine moving 2 H-atoms together starting from infinite separation. Initially the 3 S = 1 states and 1 S = 0 states must

be degenerate. As the particles start to interact via the Coulomb force at very long range, there will be a splitting between

singlet and triplet.
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so the singlet-triplet splitting is approximately

−J ≡ E0 − E1 = ⟨0|H|0⟩ − ⟨1|H|1⟩

≃ 2

∫
d3r1d

3r2ψ
∗
a(r1)ψ

∗
b (r2)V (r1, r2)ψa(r2)ψb(r1),

(240)

where V represents the Coulomb interactions between the particles (and possible other par-

ticles in the problem).58

We’d now like to write down a simple Hamiltonian for the spins which contains the physics

of this exchange splitting. This was done first around 1939 by Heisenberg, who suggested

H2−spin = JŜ1 · Ŝ2 (242)

You can easily calculate that the energy of the triplet state in this Hamiltonian is J/4, and

that of the singlet state −3J/4. So the splitting is indeed J . Note that the sign of J in the

H2 case is positive, meaning the S = 0 state is favored; the interaction is then said to be

antiferromagnetic, meaning it favors antialigning the spins with each other.59

The so-called Heitler-London model of exchange just reviewed presented works reasonably

well for well-separated molecules, but for N atoms in a real solid, magnetic interactions are

much more complicated, and it is in general not sufficient to restrict one’s consideration

to the 4-state subspace (singlet ⊕ 3 components of triplet) to calculate the effective ex-

change. In many cases, particularly when the magnetic ions are reasonably well-separated,

it nevertheless turns out to be ok to simply extend the 2-spin form (242) to the entire lattice:

H = J
∑
iδ

Ŝi · Ŝi+δ (243)

where J is the exchange constant, i runs over sites and δ runs over nearest neighbors.60 This

is the so-called Heisenberg model. The sign of J can be either antiferromagnetic (J > 0 in

this convention), or ferromagnetic (J < 0). This may lead, at sufficiently low temperature,
58For example, in the H molecule,

V (r1, r2) =
e2

|r1 − r2|
+

e2

|R1 −R2|
−

e2

|r1 −R1|
−

e2

|r2 −R2|
, (241)

where R1 and R2 are the sites of the protons. Note the argument above would suggest naively that the triplet state should be the

ground state in the well-separated ion limit, because the Coulomb interaction is minimized in the spatially antisymmetric case.

However the true ground state of the H2 molecule is the Heitler-London singlet state ψs(r1, r2) ≃ ψa(r1)ψb(r2)+ψa(r2)ψb(r1).

In the real H2 molecule the singlet energy is lowered by interactions of the electrons in the chemical bond with the protons–the

triplet state is not even a bound state!
59Historically the sign convention for J was the opposite; J > 0 was usually taken to be ferromagnetic, i.e. the Hamiltonian

was defined with another minus sign. I use the more popular convention H = J
∑
Si · Sj . Be careful!

60One has to be a bit careful about the counting. J is defined conventionally such that there is one term in the Hamiltonian

for each bond between two sites. Therefore if i runs over all sites, one should have δ only run over, e.g. for the simple cubic

lattice, +x̂, +ŷ, and +ẑ. If it ran over all nearest neighbors, bonds would be double-counted and we would have to multiply by

1/2.
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to a quantum ordered state with ferromagnetic or antiferromagnetic-type order. Or, it may

not. A good deal depends on the type and dimensionality of the lattice, as we discuss below.

Figure 18: a) Ferromagnetic ordering; b) antiferromagnetic ordering.

Although oversimplified, the Heisenberg model is still very difficult to solve. Fortunately,

a good deal has been learned about it, and once one has put in the work it turns out to

describe magnetic ordering and magnetic correlations rather well for a wide class of solids,

provided one is willing to treat J as a phenomenological parameter to be determined from a

fit to experiment.

The simplest thing one can do to take interactions between spins into account is to ask,

“What is the average exchange felt by a given spin due to all the other spins?" This is the

essence of the molecular field theory or mean field theory due to Weiss. Split off from the

Hamiltonian all terms connecting any spins to a specific spin Ŝi. For the nearest-neighbor

exchange model we are considering, this means just look at the nearest neighbors. This part

of the Hamiltonian is

δHi = Ŝi ·

[
J
∑
δ

Ŝi+δ

]
− µ⃗i ·H, (244)

where we have included the coupling of the spin in question to the external field as well. We

see that the 1-spin Hamiltonian looks like the Hamiltonian for a spin in an effective field,

δHi = −µ⃗i ·Heff , (245)

Heff = H− J

gµB

∑
δ

Ŝi+δ, (246)

where the magnetic moment µ⃗ ≡ γS = gµBS. Note this “effective field" as currently defined

is a complicated operator, depending on the neighboring spin operators Ŝi+δ. The mean field
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theory replaces this quantity with its thermal average

Heff = H− J

gµB

∑
δ

⟨Ŝi+δ⟩ (247)

= H− zJ

(gµB)2
M, (248)

where the magnetization M = ⟨µ⟩ and z is the number of nearest neighbors again. But since

we have an effective one-body Hamiltonian, thermal averages are supposed to be computed

just as in the noninteracting system, cf. (236), but in the ensemble with effective magnetic

field. Therefore the magnetization is

M = γSB(βγSHeff ) = γSB

(
βγS[H − zJ

γ2
M ]

)
. (249)

This is now a nonlinear equation for M , which we can solve for any H and T . It should

describe a ferromagnet with finite spontaneous (H → 0) magnetization below a critical

temperature Tc if J < 0. So to search for Tc, set H = 0 and expand B(x) for small x (we

are looking for a second order transition, where M → 0 continuously):

M = −γSB
(
zJ

γTc
M

)
≃ −γS S + 1

3S

zJ

γTc
M (250)

⇒ Tc =
S(S + 1)

3
z(−J), (251)

So the critical temperature in this mean field theory (unlike the BCS mean field theory!) is

of order the fundamental interaction energy |J |. We expect this value to be an upper bound

to the true critical temperature, which will be supressed by spin fluctuations about the mean

field used in the calculation.

Below Tc, we can calculate how the magnetization varies near the transition by expanding

the Brillouin fctn. to one higher power in x. The result is

M ∼ (T − Tc)
1/2. (252)

Note this exponent 1/2 is characteristic of the disappearance of the order parameter near

the transition of any mean field theory (Landau).
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Figure 19: Plot of Mathematica solution to eqn. (249) for M vs. T using −J = g = 1; z = 4;S = 1/2. Tc=1

for this choice. Upper curve: H = 0.1; lower curve: H = 0.

3.2 Ising model

The Ising model61 consists of a set of spins si with z-components only localized on lattice

sites i interacting via nearest-neighbor exchange J < 0:

H = J
∑

i,j∈n.n.

SiSj − 2µBH
∑
i

Si. (253)

Note it is an inherently classical model, since all spin commutators vanish [Si, Sj] = 0. Its

historical importance consisted not so much in its applicability to real ferromagnetic systems

as in the role its solutions, particularly the analytical solution of the 2D model published by

Onsager in 1944, played in elucidating the nature of phase transitions. Onsager’s solution

demonstrated clearly that all approximation methods and series expansions heretofore used

to attack the ferromagnetic transition failed in the critical regime, and thereby highlighted

the fundamental nature of the problem of critical phenomena, not solved (by Wilson and

others) until in the early 70’s.

3.2.1 Phase transition/critical point

We will be interested in properties of the model (253) at low and at high temperatures.

What we will find is that there is a temperature Tc below which the system magnetizes

spontaneously, just as in mean field theory, but that its true value is in general smaller than

that given by mean field theory due to the importance of thermal fluctuations. Qualitatively,

the phase diagram looks like this:

Below Tc, the system magnetizes spontaneously even for field H → 0. Instead of investi-

gating the Onsager solution in detail, I will rely on the Monte Carlo simulation of the model
61The “Ising model" was developed as a model for ferromagnetism by Wilhelm Lenz and his student Ernst Ising in the early

‘20’s.
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Figure 20: Field-magnetization curves for three cases. M0 is spontaneous magnetization in ferromagnetic

phase T < Tc.

at http://mattbierbaum.github.io/ising.js/. The idea is as follows. We would like

to minimize F = T log Tr exp−βH for a given temperature and applied field. Finding the

configuration of Ising spins which does so is a complicated task, but we can imagine starting

the system at high temperatures, where all configurations are equally likely, and cooling to

the desired temperature T .62 Along the way, we allow the system to relax by “sweeping"

through all spins in the finite size lattice, and deciding in the next Monte Carlo “time" step

whether the spin will be up or down. Up and down are weighted by a Boltzman probability

factor

p(Si = ±1/2) =
e±µHeff/T

e−µHeff/T + eµHeff/T
, (254)

where Heff
i is the effective field defined in (246). The simulation picks a spin Si in the next

time step randomly, but weighted with these up and down probabilities. A single “sweep"

(time step) consists of L × L such attempts to flip spins, where L is the size of the square

sample. Periodic boundary conditions are assumed, and the spin configuration is displayed,

with one color for up and one for down.

Here are some remarks on Ising critical phenomena, some of which you can check yourself

with the simulation:

• At high temperatures one recovers the expected Curie law χ ∼ 1/T

62This procedure is called simulated annealing
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• The susceptibility diverges at a critical temperature below the mean field value.63 Near,

but not too near, the transition χ has the Curie-Weiss form χ ∼ (T − Tc)
−1.

• With very careful application of the simulation, one should obtain Onsager’s result that

very near the transition ("critical regime")

M ∼ (Tc − T )β, (255)

with β = 1/8. The susceptibility actually varies as

χ ∼ |T − Tc|−γ, (256)

with γ = 7/4. Other physical quantities also diverge near the transition, e.g. the specific

heat varies as |T − Tc|−α, with α = 0 (log divergence).

• There is no real singularity in any physical quantity so long as the system size remains

finite.

• The critical exponents α, β, γ... get closer to their mean field values (β = 1/2, α =,

γ =,... ) as the number of nearest neighbors in the lattice increases, or if the dimen-

sionality of the system increases.

• The mean square size of themal magnetization fluctuations gets very large close to the

transition (“Critical opalescence", so named for the increased scattering of light near

the liquid-solid critical point) .

• Magnetization relaxation gets very long near the transition (“Critical slowing down").

• In 1D there is no finite temperature phase transition, although mean field theory predicts

one. This is an example of the Mermin-Wagner theorem, which states that for short

range interactions and an order parameter which obeys a continuous symmetry, there

is no long range order in 1D, and none in 2D if T > 0. Note the Ising model escapes

this theorem because it has only a discrete (so-called Z2) symmetry: the magnetization

can be ±S on each site.
63This is given as a homework problem. Note the value of J used in the simulation is 1/4 that defined here, since S’s are ±1.
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3.2.2 1D solution by transfer matrix

3.2.3 Ferromagnetic domains

3.3 Ferromagnetic magnons

Let’s consider the simplest example of an insulating ferromagnet, described by the ferromag-

netic Heisenberg Hamiltonian

H = J
∑
iδ

Ŝi · Ŝi+δ − 2µBH0

∑
i

Ŝiz, (257)

where J < 0 is the ferromagnetic exchange constant, i runs over sites and δ runs over nearest

neighbors, and H0 is the magnetic field pointing in the ẑ direction. It is clear that the system

can minimize its energy by having all the spins S align along the ẑ direction at T = 0; i.e.

the quantum ground state is identical to the classical ground state. Finding the elementary

excitations of the quantum many-body system is not so easy, however, due to the fact that

the spin operators do not commute.

3.3.1 Holstein-Primakoff transformation

One can attempt to transform the spin problem to a more standard many-body interacting

problem by replacing the spins with boson creation and annihilation operators. This can be

done exactly by the Holstein-Primakoff transformation64

Ŝ+
i = Ŝix + iŜiy = (2S)1/2

(
1− a†iai

2S

)1/2

ai (258)

Ŝ−
i = Ŝix − iŜiy = (2S)1/2a†i

(
1− a†iai

2S

)1/2

. (259)

Verify for yourselves that these definitions S±
i give the correct commutation relations [Ŝx, Ŝy] =

iŜz if the bosonic commutation relations [a, a†] = 1 are obeyed on a given lattice site. Note

also that the operators which commute with the Hamiltonian are Ŝ2 and Ŝz as usual, so we

can classify all states in terms of their eigenvalues S(S+1) and Sz. To complete the algebra

we need a representation for Ŝz, which can be obtained by using the identity (on a given site

i)

Ŝ2
z = S(S + 1)− 1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
. (260)

Using (259) and some tedious applications of the bosonic commutation relations, we find

Ŝz = S − a†a. (261)
64T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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Now since the system is periodic, we are looking for excitations which can be characterized

by a well-defined momentum (crystal momentum) k, so we define the Fourier transformed

variables

ai =
1

N1/2

∑
k

e−ik·xi bk ; a†i =
1

N1/2

∑
k

eik·xi b†k, (262)

where as usual the F.T. variables also satisfy the bosonic relations [bk, bk′ ] = δkk′ , etc.

Looking forward a bit, we will see that the operators b†k and bk create and destroy a magnon

or spin-wave excitation of the ferromagnet. These turn out to be excitations where the

spins locally deviate only a small amount from their ground state values (∥ ẑ) as the “spin

wave" passes by. This suggests a posteriori that an expansion in the spin deviations a†iai

(see (261)) may converge quickly. Holstein and Primakoff therefore suggested expanding the

nasty square roots in (259), giving

Ŝ+
i ≃ (2S)1/2

[
ai −

(
a†iaiai
4S

)
+ . . .

]

=

(
2S

N

)1/2
[∑

k

e−ik·Ribk −
1

4SN

∑
k,k′,k′′

ei(k−k′−k′′)·Rib†kbk′bk′′ + . . .

]
, (263)

Ŝ−
i ≃ (2S)1/2

[
a†i −

(
a†ia

†
iai

4S

)
+ . . .

]

=

(
2S

N

)1/2
[∑

k

eik·Rib†k −
1

4SN

∑
k,k′,k′′

ei(k+k′−k′′)·Rib†kb
†
k′bk′′ + . . .

]
, (264)

Ŝiz = S − a†iai = S − 1

N

∑
kk′

ei(k−k′)·Rib†kbk′ . (265)

Note that the expansion is formally an expansion in 1/S, so we might expect it to converge

rapidly in the case of a large-spin system.65 The last equation is exact, not approximate,

and it is useful to note that the total spin of the system along the magnetic field is

Sz,tot =
∑
i

Sz = NS −
∑
k

b†kbk, (266)

consistent with our picture of magnons tipping the spin away from its T = 0 equilibrium

direction along the applied field.

3.3.2 Linear spin wave theory

The idea now is to keep initially only the bilinear terms in the magnon operators, leaving

us with a soluble Hamiltonian, hoping that we can then treat the 4th-order and higher
65For spin-1/2, the case of greatest interest, however, it is far from obvious that this uncontrolled approximation makes any

sense, despite the words we have said about spin deviations being small. Why should they be? Yet empirically linear spin wave

theory works very well in 3D, and surprisingly well in 2D.
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terms perturbatively.66 Simply substitute (263)-(265) into (257), and collect the terms first

proportional to S2, S, 1, 1/S, etc. We find

H =
1

2
JNzS2 − 2µBH0S +Hmagnon

0 +O(1), (267)

where z is the number of nearest neighbors (e.g. 6 for simple cubic lattice), and

Hmagnon
0 =

JS

N

∑
iδkk′

[
e−i(k−k′)·Rieik

′·δbkb
†
k′ + ei(k−k′)·Rie−ik

′·δb†kbk′

−ei(k−k′)·Rib†kbk′ − e−i(k−k′)·(Ri+δ)b†kbk′

]
+

2µBH0

N

∑
ikk′

ei(k−k′)·Rib†kbk′

= JzS
∑
k

[
γkbkb

†
k + γ−kb

†
kbk − 2b†kbk

]
+ 2µBH0

∑
k

b†kbk

=
∑
k

[−2JzS(1− γk) + 2µBH0] b
†
kbk, (268)

where

γk =
1

z

∑
δ

eik·δ (269)

is the magnon dispersion function, which in this approximation depends only on the positions

of the nearest neighbor spins. Note in the last step of (268), I assumed γk = γ−k, which is

true for lattices with inversion symmetry. For example, for the simple cubic lattice in 3D

with lattice constant a, γk = (cos kxa + cos kya + cos kza)/3, clearly an even function of k.

Under these assumptions, the magnon part of the Hamiltonian is remarkably simple, and

can be written like a harmonic oscillator or phonon-type Hamiltonian, Hmagnon
0 =

∑
k nkωk,

where nk = b†kbk is the number of magnons in state k, and

ωk = −2JSz(1− γk) + 2µBH0 (270)

is the magnon dispersion. The most important magnons will be those with momenta close

to the center of the Brillouin zone, k ∼ 0, so we need to examine the small-k dispersion

function. For a Bravais lattice, like simple cubic, this expansion gives 1− γk ≃ k2,67 i.e. the

magnon dispersion vanishes as k → 0. For more complicated lattices, there will be solutions

with ωk → const. There is always a “gapless mode" ωk → 0 as well, however, since the

existence of such a mode is guaranteed by the Goldstone theorem.68 The figure shows a

simple 1D schematic of a spin wave with wavelength λ = 2π/k corresponding to about 10

lattice sites. The picture is supposed to convey the fact that the spin deviations from the

ordered state are small, and vary slightly from site to site. Quantum mechanically, the wave

function for the spin wave state contains at each site a small amplitude for the spin to be
66physically these “nonlinear spin wave" terms represent the interactions of magnons, and resemble closely terms representing

interactions of phonons in anharmonic lattice theory
67Check for simple cubic!
68For every spontaneously broken continuous symmetry of the Hamiltonian there is a ωk→0 = 0 mode.
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Figure 21: Real space picture of spin deviations in magnon. Top: ordered ground state

in a state with definite Sx and/or Sy. This can be seen by inverting Eq. (264) to leading

order, & noting that the spin wave creation operator b†k lowers the spin with Ŝ− = Ŝx − iŜy

with phase e−ik·Ri and amplitude ∼ 1/S at each site i.

3.3.3 Dynamical Susceptibility

Experimental interlude

The simple spin wave calculations described above (and below) are uncontrolled for spin-

1/2 systems, and it would be nice to know to what extent one can trust them. In recent years,

numerical work (exact diagonalization and quantum Monte Carlo) techniques have shown, as

noted, that linear spin wave calculations compare suprisingly well with such “exact" results

for the Heisenberg model. But we still need to know if there are any physical systems

whose effective spin Hamiltonian can really be described by Heisenberg models. In addition,

keep in mind that the utility of spin wave theory was recognized long before such numerical

calculations were available, mainly through comparison with experiments on simple magnets.

The most useful probe of magnetic structure is slow neutron scattering, a technique developed

in the 40’s by Brockhouse and Schull (Nobel prize 1994). This section is a brief discussion

of how one can use neutron scattering techniques to determine the dispersion and lifetimes

of magnetic excitations in solids.69

Neutrons scatter from solids primarily due to the nuclear strong force, which leads to non-

magnetic neutron-ion scattering and allows structural determinations very similar to x-ray

diffraction analysis. In addition, slow neutrons traversing a crystal can emit or absorb

phonons, so the inelastic neutron cross-section is also a sensitive measure of the dispersion
69A complete discussion is found in Lovesey, Theory of Neutron Scattering from Condensed Matter, Oxford 1984, V. 2
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of the collective modes of the ionic system.70 There is also a force on the neutron due to

the interaction of its small magnetic dipole moment with the spin magnetic moment of the

electrons in the solid. There are therefore additional contributions to the peaks in the elastic

neutron scattering intensity (at the Bragg angles) corresponding to magnetic scattering if

the solid has long-range magnetic order; they can be distinguished from the nonmagnetic

scattering because the additional spectral weight is strongly temperature dependent and

disappears above the critical temperature, or through application of an external magnetic

field. Furthermore, in analogy to the phonon case, inelastic neutron scattering experiments

on ferromagnets yield peaks corresponding to processes where the neutron absorbs or emits

a spin wave excitation. Thus the dispersion relation for the magnons can be mapped out.71

I will not go through the derivation of the inelastic scattering cross section, which can be

found in Lovesey’s book. It is similar to the elementary derivation given by Ashcroft &

Mermin in Appendix N for phonons. The result is(
d2σ

dΩdω

)
inel

= a20
k′

k

{g
2
F (q)

}2

e−2W (q) (1 + b(ω))

× −N
π(gµB)2

∑
αβ

(δαβ − q̂αq̂β) Im χαβ(q,−ω), (271)

where a0 is the Bohr radius, k and k′ are initial and final wave vector, q = k−k′, F (q) atomic

form factor, e−2W (q) the Debye-Waller factor, and b(ω) the Bose distribution function, N the

number of unit cells, and ω is the energy change of the neuton, k2/(2m) − k′2/(2m). The

physics we are interested in is contained in the imaginary part of the dynamic susceptibility

χ(q, ω). For ω < 0, this measures the energy loss by neutrons as they slow down while

emitting spin waves in the solid; for ω > 0 the neutrons are picking up energy from thermally

excited spin waves.

To see the effect of spin excitations within linear spin wave theory, one calculates the

transverse spin susceptibility

χR+−(Ri −Rj, t) ≡ −Tr
(
ρ̂[Ŝ+

i (t), Ŝ
−
j ]
)
θ(t) (272)

and then its Fourier transform wrt momentum q and frequency ω. I won’t do this calculation

explicitly, but leave it as an exercise. You express the S operators in terms of the bk’s, whose

time dependence is exactly known since the approximate Hamiltonian is quadratic. At the

end, after Fourier transforming, one recovers
70cf. Ashcroft & Mermin ch. 24
71Even in systems without long range magnetic order, neutron experiments provide important information on the correlation

length and lifetime of spin fluctuations. In strongly correlated systems (e.g. magnets just above their critical temperature, or

itinerant magnets close to a magnetic transition as in Sec. xxx), these can be thought of as collective modes with finite lifetime

and decay length. This means the correlation function ⟨Ŝα
i (t)Ŝ

α
j ⟩ is not const. as t, |Ri−Rj | → ∞, but may fall off very slowly,

as “power laws" t−β , |Ri −Rj |−γ .
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χ+−(q, ω) = (
2S

N
)

(
1

ω + ωq + i0+

)
. (273)

Again, as for the Fermi gas, we see that the collective modes of the system are reflected as

the poles in the appropriate response function.

The final cross section is now proportional to

Im χ+−(q,−ω) ∼ δ(ω + ωq), (274)

i.e. there is a peak when a magnon is absorbed (neutron’s energy k′2/(2m) is larger than initial

energy k2/(2m) ⇒ ω ≡ k2/(2m) − k′2/(2m) < 0.). There is another similar contribution

proportional to δ(ω − ωq) (emission) coming from χ−+. Thus the dispersion ωq can be

mapped out by careful measurement. The one-magnon lines are of course broadened by

Figure 22: Neutron scattering data on ferromagnet. I searched a bit but couldn’t come up with any more

modern data than this. This is Fig. 1, Ch. 4 of Kittel, Magnon dispersions in magnetite from inelastic

neutron scattering by Brockhouse (Nobel Prize 1994) and Watanabe.

magnon-magnon interactions, and by finite temperatures (Debye-Waller factor). There are

also multimagnon absorption and emission processes which contribute in higher order.

Finally, note that I proposed to calculate χ+−, the transverse magnetic susceptibility in

Eq. 272. What about the longitudinal susceptibilty χzz, defined in the analogous way but

for z-components ⟨[Sz, Sz]⟩? Because the ordered spins point in the z direction, the mode

for this channel is gapped, not gapless, with energy of order J !

3.4 Quantum antiferromagnet

Antiferromagnetic systems are generally approached by analogy with ferromagnetic systems,

assuming that the system can be divided up into two or more sublattices, i.e. infinite inter-
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penetrating subsets of the lattice whose union is the entire lattice. Classically, it is frequently

clear that if we choose all spins on a given judiciously chosen sublattice to be aligned with

one another, we must achieve a minimum in the energy. For example, for the classical AF

Heisenberg model H = J
∑

iδ Si · Si+δ with J > 0 on a square lattice, choosing the A-B

sublattices in the figure and making all spins up on one and down on another allows each

bond to achieve its lowest energy of −JS2. This state, with alternating up and down spins, is

referred to as the classical Neél state. Similarly, it may be clear to you that on the triangular

lattice the classical lowest energy configuration is achieved when spins are placed at 120◦

with respect to one another on the sublattices A,B,C. However, quantum magnetic systems

Figure 23: Possible choice of sublattices for antiferromagnet

are not quite so simple. Consider the magnetization MA on a given sublattice (say the A sites

in the figure) of the square lattice; alternatively one can define the staggered magnetization

as Ms =
∑

i(−1)i⟨Ŝi⟩ (Note (−1)i means +1 on the A sites and −1 on the B sites.) Either

construct can be used as the order parameter for an antiferromagnet on a bipartite lattice.

In the classical Neél state, these is simply MA = NS/2 and Ms = NS, respectively, i.e. the

sublattice or staggered magnetization are saturated. In the wave function for the ground

state of a quantum Heisenberg antiferromagnet, however, there is some amplitude for spins to

be flipped on a a given sublattice, due to the fact that for a given bond the system can lower

its energy by taking advantage of the ŜxŜ ′
x + ŜyŜ

′
y terms. This effect can be seen already

by examining the two-spin 1/2 case for the ferromagnet and antiferromagnet. For the ferro-

magnet, the classical energy is −|J |S2 = −|J |/4, but the quantum energy in the total spin 1

state is also −|J |/4. For the antiferromagnet, the classical energy is −JS2 = −J/4, but the

energy in the total spin 0 quantum mechanical state is −3J/4. So quantum fluctuations–
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which inevitably depress the magnetization on a given sublattice–lower the energy in the

antiferromagnetic case. This can be illustrated in a very simple calculation of magnons in

the antiferromagnet following our previous discussion in section 7.2.

3.4.1 Antiferromagnetic magnons

We will follow the same procedure for the ferromagnet on each sublattice A and B, defining

ŜA+i = ŜAix + iŜAiy = (2S)1/2

(
1− A†

iAi
2S

)1/2

Ai (275)

ŜA−i = ŜAix − iŜAiy = (2S)1/2A†
i

(
1− A†

iAi
2S

)1/2

(276)

ŜB+
i = ŜBix + iŜBiy = (2S)1/2

(
1− B†

iBi

2S

)1/2

Bi (277)

ŜB−
i = ŜBix − iŜBiy = (2S)1/2B†

i

(
1− B†

iBi

2S

)1/2

(278)

SAiz = S − A†
iAi (279)

−SBiz = S −B†
iBi, (280)

i.e. we assume that in the absence of any quantum fluctuations spins on sublattice A are up

and those on B are down. Otherwise the formalism on each sublattice is identical to what we

did for the ferromagnet. We introduce on each sublattice creation & annihilation operators

for spin waves with momentum k:

ak =
1

N1/2

∑
i∈A

Aie
ik·Ri ; a†k =

1

N1/2

∑
i∈A

A†
ie

−ik·Ri (281)

bk =
1

N1/2

∑
i∈B

Bie
ik·Ri ; b†k =

1

N1/2

∑
i∈B

B†
i e

−ik·Ri . (282)

In principle k takes values only in the 1st magnetic Brillouin zone, or half-zone, since the

periodicity of the sublattices is twice that of the underlying lattice. The spin operators on a
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given site are then expanded as

ŜA+i ≃
(
2S

N

)1/2
[∑

k

e−ik·Riak + . . .

]
, (283)

ŜB+
i ≃

(
2S

N

)1/2
[∑

k

e−ik·Ribk + . . .

]
, (284)

ŜA−i ≃
(
2S

N

)1/2
[∑

k

eik·Ria†k + . . .

]
, (285)

ŜB−
i ≃

(
2S

N

)1/2
[∑

k

eik·Rib†k + . . .

]
, (286)

ŜAiz = S − 1

N

∑
kk′

ei(k−k′)·Ria†kak′ (287)

ŜBiz = −S +
1

N

∑
kk′

ei(k−k′)·Ria†kak′ . (288)

The expansion of the Heisenberg Hamiltonian in terms of these variables is now (compare

(267))

H = −NzJS2 +Hmagnon
0 +O(1), (289)

Hmagnon
0 = JzS

∑
k

[
γk(a

†
kb

†
k + akbk) + (a†kak + b†kbk)

]
(290)

Unlike the ferromagnetic case, merely expressing the Hamiltonian to bilinear order in the

magnon variables does not diagonalize it immediately. We can however perform a canonical

transformation72 to bring the Hamiltonian into diagonal form (check!):

αk = ukak − vkb
†
k ; α†

k = uka
†
k − vkbk (291)

βk = ukbk − vka
†
k ; β†

k = ukb
†
k − vkak, (292)

where the coefficients uk, vk must be chosen such that u2k − v2k = 1. One such choice is

uk = cosh θk and vk = sinh θk. For each k, choose the angle θk such that the anomalous

terms like α†
kβ

†
k vanish. One then finds the solution

tanh 2θk = −γk, (293)

and

Hmagnon
0 = −NEJ +

∑
k

ωk(α
†
kαk + β†

kβk + 1), (294)

where

ω2
k = E2

J(1− γ2k), (295)
72The definition of a canonical transformation, I remind you, is one which will give canonical commutation relations for the

transformed fields. This is important because it ensures that we can interpret the Hamiltonian represented in terms of the new

fields as a (now diagonal) fermion Hamiltonian, read off the energies, etc.

73



Figure 24: Integrated intensity of (100) Bragg peak vs. temperature for LaCuO4, with TN = 195K. (After

Shirane et al. 1987)

and EJ = JzS. Whereas in the ferromagnetic case we had ωk ∼ (1 − γk) ∼ k2, it is

noteworthy that in the antiferromagnetic case the result ωk ∼ (1− γk)
1/2 ∼ k gives a linear

magnon dispersion at long wavelengths (a center of symmetry of the crystal must be assumed

to draw this conclusion). Note further that for each k there are two degenerate modes in

Hmagnon
0 .

3.4.2 Quantum fluctuations in the ground state

You may wonder that there is a constant term in (294), since Hmagnon was the part of the

Hamiltonian which gave the excitations above the ground state in the ferromagnetic case.

Here at T = 0 the expectation values (in 3D at least, see below) ⟨α†α⟩ and ⟨β†β⟩ vanish –

there are no AF magnons in the ground state. But this leaves a constant correction coming

from Hmagnon of −NEJ+
∑

k ωk. The spin wave theory yields an decrease of the ground state

energy relative to the classical value −NJzS2, but an increase over the quantum ferromagnet

result of −N |J |S(S + 1) due to the zero-point (constant) term in (294).73 The ground-state

energy is then

E0 ≃ −NzJS2 −NzJS +
∑
k

ωk. (296)

The result is conventionally expressed in terms of a constant β defined by

E0 ≡ −NJzS
(
S +

β

z

)
, (297)

73Recall the classical Neél state, which does not contain such fluctuations, is not an eigenstate of the quantum Heisenberg

Hamiltonian.
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Figure 25: a) Inelastic neutron scattering intensity vs. energy transfer at 296K near zone boundary Q =

(1, k, 0.5) for oriented LaCuO4 crystals with Neél temperature 260K; b) spin-wave dispersion ωq vs. q∥,

where q∥ is in-plane wavevector. (after Hayden et al. 1991)

and

β/z = N−1
∑
k

[
1−

√
1− γ2k

]
=

0.097 3D

0.158 2D
. (298)

(I am checking these–they don’t agree with literature I have)

Quantum fluctuations have the further effect of preventing the staggered magnetization

from achieving its full saturated value of S, as in the classical Neél state, as shown first by

Anderson.74 Let us consider the average z-component of spin in equilibrium at temperature

T , averaging only over spins on sublattice A of a D-dimensional hypercubic lattice. From

(287), we have ⟨ŜAz ⟩ = S − N−1
∑

k⟨A
†
kAk⟩ within linear spin wave theory. Inverting the

transformation (398), we can express the A’s in terms of the α’s and β’s, whose averages

we can easily calculate. Note the 0th order in 1/S gives the classical result, ⟨ŜAz ⟩, and the

deviation is the spin wave reduction of the sublattice moment

δMA

N
= ⟨ŜAz ⟩ − S = − 1

N

∑
k

⟨a†kak⟩

= − 1

N

∑
k

⟨(ukα†
k + vkβk)(ukαk + vkβ

†
k)⟩

= − 1

N

∑
k

u2k⟨α
†
kαk⟩+ v2k⟨β

†
kβk⟩+ v2k, (299)

where N is the number of spins on sublattice B. We have neglected cross terms like ⟨α†
kβ

†
k⟩

because the α and β are independent quanta by construction. However the diagonal averages

⟨α†
kαk⟩ and ⟨β†

kβk⟩ are the expectation values for the number operators of independent bosons
74P.W. Anderson, Phys. Rev. 86, 694 (1952).
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with dispersion ωk in equiblibrium, and so can be replaced (within linear spin wave theory)

by

nk ≡ ⟨β†
kβk⟩ = ⟨α†

kαk⟩ = b(ωk), (300)

where b is the Bose distribution function. The tranformation coefficients uk = cosh θk and

vk = sinh θk are determined by the condition (293) such that

u2k + v2k = cosh 2θk =
1√

1− γ2k
(301)

v2k =
1

2

(
1√

1− γ2k
− 1

)
, (302)

such that the sulattice magnetization (299) becomes

δMA

N
=

1

2
− 1

N

∑
k

(
nk +

1

2

)
1√

1− γ2k
(303)

Remarks:

1. All the above “anomalies" in the AF case relative to the F case occur because we tried

to expand about the wrong ground state, i.e. the classical Neél state, whereas we knew

a priori that it was not an eigenstate of the quantum Heisenberg model. We were

lucky: rather than breaking down entirely, the expansion signaled that including spin

waves lowered the energy of the system; thus the ground state may be thought of as

the classical Neél state and an admixture of spin waves.

2. The correction δMA is independent of S, and negative as it must be (see next point).

However relative to the leading classical term S it becomes smaller and smaller as S

increases, as expected.

3. The integral in (303) depends on the dimensionality of the system. It has a T -dependent

part coming from nk and a T -independent part coming from the 1/2. At T = 0, where

there are no spin waves excited thermally, nk = 0, and we find

δMA

N
≃


−0.078 D = 3

−0.196 D = 2

∞ D = 1

(304)

The divergence in D = 1 indicates the failure of spin-wave theory in one dimension.

4. The low temperature behavior of δM(T ) must be calculated carefully due to the sin-

gularities of the bose distribution function when ωk → 0. If this divergence is cut off

by introducing a scale k0 near k = 0 and k = (π/a, π/a), one finds that δMA diverges

as 1/k0 in 1D, and as log k0 in 2D, whereas it is finite as k0 → 0 in 3D. Thus on this
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basis one does not expect long range spin order at any nonzero temperature in two

dimensions (see discussion of Mermin-Wagner theorem below), nor even at T = 0 in

one dimension.

3.4.3 Nonlinear spin wave theory

3.4.4 Frustrated models

3.5 1D & 2D Heisenberg magnets

3.5.1 Mermin-Wagner theorem

3.5.2 1D: Bethe solution

3.5.3 2D: Brief summary

3.6 Itinerant magnetism

“Itinerant magnetism" is a catch-all phrase which refers to magnetic effects in metallic sys-

tems (i.e., with conduction electrons). Most of the above discussion assumes that the spins

which interact with each other are localized, and there are no mobile electrons. However we

may study systems in which the electrons which magnetize, or nearly magnetize are mobile,

and situations in which localized impurity spins interact with conduction electron spins in

a host metal. The last problem turns out to be a very difficult many-body problem which

stimulated Wilson to the develop of renormalization group ideas.

3.7 Stoner model for magnetism in metals

The first question is, can we have ferromagnetism in metallic systems with only one relevant

band of electrons. The answer is yes, although the magnetization/electron in the ferro-

magnetic state is typically reduced drastically with respect to insulating ferromagnets. The

simplest model which apparently describes this kind of transition (there is no exact solution

in D > 1) is the Hubbard model we have already encountered. A great deal of attention has

been focussed on the Hubbard model and its variants, particularly because it is the simplest

model known to display a metal-insulator (Mott-Hubbard) transition qualitatively similar to

what is observed in the high temperature superconductors. To review, the Hubbard model

consists of a lattice of sites labelled by i, on which electrons of spin ↑ or ↓ may sit. The

kinetic energy term in the Hamiltonian allows for electrons to hop between sites with matrix
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element t, and the potential energy simply requires an energy cost U every time two opposing

spins occupy the same site.75 Longer range interactions are neglected:

H = −t
∑

σ
<i,j>

c†iσcjσ +
1

2
U
∑
σ

niσni−σ, (305)

where < ij > means nearest neighbors only.

In its current form the kinetic energy, when Fourier transformed, corresponds, to a tight

binding band in d dimensions of width 4dt,

ϵk = −2t
d∑

α=1

cos kαa, (306)

where a is the lattice constant. The physics of the model is as follows. Imagine first that there

is one electron per site, i.e. the band is half-filled. If U = 0 the system is clearly metallic, but

if U → ∞, double occupation of sites will be “frozen out". Since there are no holes, electrons

cannot move, so the model must correspond to an insulating state; at some critical U a

metal-insulator transition must take place. We are more interested in the case away from

half-filling, where the Hubbard model is thought for large U and small doping (deviation

of density from 1 particle/site) to have a ferromagnetic ground state.76 In particular, we

would like to investigate the transition from a paragmagnetic to a ferromagnetic state as T

is lowered.

This instability must show up in some quantity we can calculate. In a ferromagnet the

susceptibility χ diverges at the transition, i.e. the magnetization produced by the application

of an infinitesimal external field is suddenly finite. In many-body language, the static,

uniform spin susceptibility is the retarded spin density – spin density correlation function,
75What happened to the long-range part of the Coulomb interaction? Now that we know it is screened, we can hope to

describe its effects by including only its matrix elements between electrons in wave functions localized on site i and site j, with

|i− j| smaller than a screening length. The largest element is normally the i = j one, so it is frequently retained by itself. Note

the Hamiltonian (305) includes only an on-site interaction for opposite spins. Of course like spins are forbidden to occupy the

same site anyway by the Pauli principle.
76At 1/2-filling, one electron per site, a great deal is known about the Hubbard model, in particular that the system is metallic

for small U (at least for non-nested lattices, otherwise a narrow-gap spin density wave instability is present), but that as we

increase U past a critical value Uc ∼ D a transition to an antiferromagnetic insulating state occurs (Brinkman-Rice transition).

With one single hole present, as U → ∞, the system is however ferromagnetic (Nagaoka state).
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(for the discussion below I take gµB = 1)

χ = χ(q = 0, ω = 0) = lim
hz→0

⟨Sz⟩
hz

=

∫
d3r

∫ ∞

0

dt⟨[Sz(r, t), Sz(0, 0)]⟩, (307)

where in terms of electron number operators nσ = ψ†
σψσ, the magnetization operators are

Sz = (1/2)[n↑ − n↓], i.e. they just measure the surplus of up over down spins at some point

in space.

k+q σ

χ
0

F
TT

~1/T

Curie

Pauli

N
0

b)

k

U

k' k'+q−σ −σ

σ

a)

Figure 26: 1a) Hubbard interaction; 1b) Spin susceptibility vs. T for free fermions.

Diagramatically, the Hubbard interaction Hint = U
∑

i ni↑ni↓ looks like figure 26a); note

only electrons of opposite spins interact. The magnetic susceptibility is a correlation function

similar to the charge susceptibility we have already calculated. At time t=0, we measure

the magnetization Sz of the system, allow the particle and hole thus created to propagate to

a later time, scatter in all possible ways, and remeasure Sz. The so-called “Stoner model"

of ferromagnetism approximates the perturbation series by the RPA form we have already

encountered in our discussion of screening,77 which gives χ = χ0/(1−Uχ0).78 At sufficiently

high T (χ0 varies as 1/T in the nondegenerate regime, Fig. 26c)) we will have Uχ0(T ) < 1,

but as T is lowered, Uχ0(T ) increases. If U is large enough, such that UN0 > 1, there will
77In the static, homogeneous case it is equivalent to the self-consistent field (SCF) method of Weiss.
78

Hamiltonian after mean field procedure is

H =
∑
kσ

ϵkc
†
kσckσ + U

∑
kσ

n−σc
†
kσckσ +H(nσ − n−σ) (308)

which is quadratic & therefore exactly soluble. Also note units: H is really µBgH/2, but never mind. Hamiltonian is equivalent

to a free fermion system with spectrum ϵ̃kσ = ϵk + Un−σ +Hσ. The number of electrons with spin σ is therefore

nσ =
∑
k

f(ϵ̃kσ) =
∑
k

f(ϵk + Un−σ +Hσ) (309)

≡ n0
σ + δnσ , (310)

where n0
σ is the equilibrium number of fermions in a free gas with no U . We can expand δnσ for small field:
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be a transition at Uχ0(Tc) = 1, where χ diverges. Note for Uχ0(T ) > 1 (T < Tc), the

susceptibility is negative, so the model is unphysical in this region. This problem arises in

part because the ferromagnetic state has a spontaneously broken symmetry, ⟨Sz⟩ ≠ 0 even

for hz → 0. Nevertheless the approach to the transition from above and the location of the

transition appear qualitatively reasonable.

It is also interesting to note that for Uχ(0) = UN0 < 1, there will be no transition,

but the magnetic susceptibility will be enhanced at low temperatures. So-called “nearly

ferromagnetic" metals like Pd are qualitatively described by this theory. Comparing the

RPA form

χ =
χ0(T )

1− Uχ0(T )
(315)

to the free gas susceptibility in Figure 9b, we see that the system will look a bit like a free

gas with enhanced density of states, and reduced degeneracy temperature T ∗
F .79 For Pd,

the Fermi temperature calculated just by counting electrons works out to 1200K, but the

susceptibility is found experimentally to be ∼ 10× larger than N0 calculated from band

structure, and the susceptibility is already Curie-like around T ∼ T ∗
F ≃300K.

3.7.1 Moment formation in itinerant systems

We will be interested in asking what happens when we put a localized spin in a metal,

but first we should ask how does that local moment form in the first place. If an arbitrary

impurity is inserted into a metallic host, it is far from clear that any kind of localized moment

δnσ =
∑
k

f(ϵk + Un−σ +Hσ)−
∑
k

f(ϵk +Hσ)

≃
∑
k

df

dϵk

dϵ̃

dH H=0
H − (U → 0) (311)

=
∑
k

df

dϵk

(
U
dn−σ

dH
+ σ

)
H=0

H − (U → 0) .

→
H→0

−χ0U
dn−σ

dH H=0
H

where in the last step we set H = 0, in which case nσ = n−σ (paramagnetic state). I used χ0 =
∑

k −df/dϵk for Fermi gas.

The magnetization is now

m ≡ χH = n↑ − n↓ = χ0H + δn↑ − δn↓ (312)

= χ0H + χ0UχH, (313)

since χ = dm/dH. So total susceptibility has RPA form:

χ =
χ0

1− Uχ0
. (314)

79Compare to the Fermi liquid form

χ =
m∗

m

χ0

1 + Fa
0

. (316)
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will result: a donor electron could take its spin and wander off to join the conduction sea,

for example. Fe impurities are known to give rise to a Curie term in the susceptibility when

embedded in Cu, for example, but not in Al, suggesting that a moment simply does not

form in the latter case. Anderson80 showed under what circumstances an impurity level in

an interacting host might give rise to a moment. He considered a model with a band of

electrons81 with energy ϵk, with an extra dispersionless impurity level E0. Suppose there are

strong local Coulomb interactions on the impurity site, so that we need to add a Hubbard-

type repulsion. And finally suppose the conduction (d) electrons can hop on and off the

impurity with some matrix element V . The model then looks like

H =
∑
kσ

ϵkc
†
kσckσ + E0

∑
σ

n0σ + V
∑
kσ

(c†kσc0 + c†0ckσ) +
1

2
U
∑
σ

n0σn0−σ, (317)

where n0σ = c†0σc0σ is the number of electrons of spin σ on the impurity site 0. By the Fermi

Golden rule the decay rate due to scattering from the impurity of a band state ϵ away from

the Fermi level EF in the absence of the interaction U is of order

∆(ϵ) = πV 2
∑
k

δ(ϵ− ϵk) ≃ πV 2N0 (318)

In the “Kondo" case shown in the figure, where E0 is well below the Fermi level, the scattering

processes take place with electrons at the Fermi level ϵ = 0, so the bare width of the impurity

state is also ∆ ≃ πV 2N0. So far we still do not have a magnetic moment, since, in the absence

of the interaction U , there would be an occupation of 2 antiparallel electrons. If one could

effectively prohibit double occupancy, however, i.e. if U ≫ ∆, a single spin would remain

in the localized with a net moment. Anderson obtained the basic physics (supression of

double occupancy) by doing a Hartree-Fock decoupling of the interaction U term. Schrieffer

and Wolff in fact showed that in the limit U → −∞, the virtual charge fluctuations on the

impurity site (occasional double occupation) are eliminated, and the only degree of freedom

left (In the so-called Kondo regime corresponding to Fig. 10a) is a localized spin interacting

with the conduction electrons via an effective Hamiltonian

HKondo = JS · σ, (319)

where J is an antiferromagnetic exchange expressed in terms of the original Anderson model

parameters as

J = 2
V 2

E0

, (320)

80PW Anderson, Phys. Rev. 124, 41 (1961)
81The interesting situation for moment formation is when the bandwidth of the "primary" cond. electron band overlapping

the Fermi level is much larger than the bare hybridization width of the impurity state. The two most commonly considered

situations are a band of s electrons with d-level impurity (transition metal series) and d-electron band with localized f -level

(rare earths/actinides–heavy fermions).
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S is the impurity spin-1/2, and

σi =
1

2

∑
kk′αβ

c†kα (τi)αβ ck′β, (321)

with τi the Pauli matrices, is just the conduction electron spin density at the impurity site.
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N(E)

E

d-band
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Kondo
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Empty moment
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d-band d-band
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F

E
F

Figure 27: Three different regimes of large U Anderson model depending on position of bare level E0. In

Kondo regime (E0 << EF ), large moments form at high T but are screened at low T . In mixed valent

regime, occupancy of impurity level is fractional and moment formation is marginal. For E0 > EF , level is

empty and no moment forms.

3.7.2 RKKY Interaction

Kittel p. 360 et seq.

3.7.3 Kondo model

The Hartree-Fock approach to the moment formation problem was able to account for the

existence of local moments at defects in metallic hosts, in particular for large Curie terms

in the susceptibility at high temperatures. What it did not predict, however, was that the

low-temperature behavior of the model was very strange, and that in fact the moments

present at high temperatures disappear at low temperatures, i.e. are screened completely

by the conduction electrons, one of which effectively binds with the impurity moment to

create a local singlet state which acts (at T = 0) like a nonmagnetic scatterer. This basic

physical picture had been guessed at earlier by J. Kondo,82 who was trying to explain the

existence of a resistance minimum in certain metallic alloys. Normally the resistance of
82J. Kondo, Prog. Theor. Phys. 32, 37 (64).
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metals is monotonically decreasing as the temperature is lowered, and adding impurities

gives rise to a constant offset (Matthiesen’s Rule) which does not change the monotonicity.

For Fe in Cu, however, the impurity contribution δρimp increased as the temperature was

lowered, and eventually saturated. Since Anderson had shown that Fe possessed a moment

in this situation, Kondo analyzed the problem perturbatively in terms of a magnetic impurity

coupling by exchange to a conduction band, i.e. adopted Eq. (319) as a model. Imagine

that the system at t = −∞ consists of a Fermi sea |0⟩ and one additional electron in state

|k, σ⟩ at the Fermi level. The impurity spin has initial spin projection M , so we write the

initial state as |i⟩ = c†kσ|0;M⟩ Now turn on an interaction H1 adiabatically and look at the

scattering amplitude83

between |i⟩ and |f⟩ = c†k′σ′|0;M ′⟩

⟨f |T |i⟩ = −2πi⟨f |H1 +H1
1

ϵk −H0

H1 + . . . |i⟩ (325)

If H1 were just ordinary impurity (potential) scattering, we would have H1 =
∑

kk′σσ′ c
†
kσVkk′ck′σ′ ,

and there would be two distinct second-order processes k → k′ contributing to Eq. (325),

as shown schematically at the top of Figure 28, of type a),

⟨0|ck′c†k′Vk′pcp
1

ϵk −H0

c†pVpkckc
†
k|0⟩ = Vk′p

1− f(ϵp)

ϵk − ϵp
Vpk (326)

and type b),

⟨0|ck′c†pVpkck
1

ϵk −H0
c†k′Vk′pcpc

†
k|0⟩

= −Vpk
f(ϵp)

ϵk − (ϵk − ϵp + ϵk′)
Vk′p

= Vpk
f(ϵp)

ϵk′ − ϵp
Vk′p (327)

where I have assumed k is initially occupied, and k′ empty, with ϵk = ϵk′ , whereas p can

be either; the equalities then follow from the usual application of c†c and cc† to |0⟩. Careful

checking of the order of the c’s in the two matrix elements will show you that the first

process only takes place if the intermediate state p is unoccupied, and the second only if it

is unoccupied.
83Reminder: when using Fermi’s Golden Rule (see e.g., Messiah, Quantum Mechanics p.807):

dσ

dΩ
=

2π

ℏv
|T |2ρ(E) (322)

we frequently are able to get away with replacing the full T -matrix by its perhaps more familiar 1st-order expansion

dσ

dΩ
=

2π

ℏv
|H1|2ρ(E) (323)

(Recall the T matrix is defined by ⟨ϕf |T |ϕi⟩ = ⟨ϕf |T |ψ+
i ⟩, where the ϕ’s are plane waves and ψ+ is the scattering state with

outgoing boundary condition.) In this case, however, we will not find the interesting log T divergence until we go to 2nd order!

So we take matrix elements of

T = H1 +H1
1

ϵk −H0
H1 + . . . (324)

This is equivalent and, I hope, clearer than the transition amplitude I calculated in class.
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Nnow when one sums the two processes, the Fermi function cancels. This means there is

no significant T dependence to this order (ρimp due to impurities is a constant at low T ), and

thus the exclusion principle does not play an important role in ordinary potential scattering.

Vpk Vk'p

k p k' k

p k'

Vpk
Vk'p

k p k' kσ

p k'

σ σ'' 'σ

' 'σ σ'

Sµ νS Sµ νS

potential scatt.

spin scatt.
a) b)

b)a)

Figure 28: 2nd-order scattering processes: a) direct and b) exchange scattering. Top: potential scattering;

bottom: spin scattering. Two terms corresponding to Eq. 325

Now consider the analagous processes for spin-scattering. The perturbing Hamiltonian is

Eq. 319. Let’s examine the amplitude for spin-flip transitions caused by H1, first of type a),

⟨0Ms′ |H1|0Ms⟩ (328)

=
J2

4
SµSν⟨0Ms′|ck′σ′c†k′σ′τ

ν
σ′σ′′cpσ′′

1

ϵk −H0

c†pσ′′τ
µ
σ′′σckσc

†
kσ|0Ms⟩

=
J2

4

1− f(ϵp)

ϵk − ϵp
⟨M ′

S|SνSµτ νσ′σ′′τ
µ
σ′′σ|MS⟩

and then of type b),

J2

4

f(ϵp)

ϵk − ϵp
⟨M ′

S|SνSµτ νσ′′στ
µ
σ′σ′′ |MS⟩. (329)

Now note that τµσ′σ′′τ νσ′′σ = (τµτ ν)σ′σ, and use the identity τµτν = δνµ + iταϵαµν . The δµν

pieces clearly will only give contributions proportional to S2, so they aren’t the important

ones which will distinguish between a) and b) processes compared to the potential scattering

case. The ϵανµ terms give results of differing sign, since a) gives ϵανµ and b) gives ϵαµν . Note

the basic difference between the 2nd-order potential scattering and spin scattering is that

the matrix elements in the spin scattering case, i.e. the Sµ, didn’t commute! When we add
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a) and b) again the result is

J2

ϵk − ϵp

{[
1

4
S(S + 1)− ⟨M ′

Sσ
′|S · σ|MS, σ⟩

]
+f(ϵp)⟨M ′

Sσ
′|S · σ|MS, σ⟩} (330)

so the spin-scattering amplitude does depend on T through f(ϵp). Summing over the inter-

mediate states pσ′′ gives a factor∑
p

f(ϵp)

ϵk − ϵp
≃ N0

∫
dξp

f(ξp)

ξk − ξp

= N0

∫
dξp

(
− ∂f

∂ξp

)
log |ξk − ξp|, (331)

which is of order log T for states ξk at the Fermi surface! Thus the spin part of the interaction,

to a first approximation, makes a contribution to the resistance of order J3 log T (ρ involves

the square of the scattering amplitude, and the cross terms between the 1st and 2nd-order

terms in perturbation theory give this result). Kondo pointed to this result and said, “Aha!",

here is a contribution which gets big as T gets small. However this can’t be the final answer.

The divergence signals that perturbation theory is breaking down, so this is one of those

very singular problems where we have to find a way to sum all the processes. We have

discovered that the Kondo problem, despite the fact that only a single impurity is involved,

is a complicated many-body problem. Why? Because the spin induces correlations between

the electrons in the Fermi sea. Example: suppose two electrons, both with spin up, try to

spin flip scatter from a spin-down impurity. The first electron can exchange its spin with the

impurity and leave it spin up. The second electron therefore cannot spin-flip scatter by spin

conservation. Thus the electrons of the conduction band can’t be treated as independent

objects.

Summing an infinite subset of the processes depicted in Figure 28 or a variety of other

techniques give a picture of a singlet bound state where the impurity spin binds one electron

from the conduction electron sea with binding energy

TK = De−1/(JN0), (332)

where D is the conduction electron bandwidth. The renormalization group picture devel-

oped by Wilson in the 70s and the exact Bethe ansatz solution of Wiegman/Tsvelick and

Andrei/Lowenstein in 198? give a picture of a free spin at high temperatures, which hy-

bridizes more and more strongly with the conduction electron sea as the temperature is

lowered. Below the singlet formation temperature of TK , the moment is screened and the

impurity acts like a potential scatterer with large phase shift, which approaches π/2 at T = 0.
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4 Electron-phonon interaction

4.1 Hamiltonian

The subtle interplay of electrons and phonons was explained in the 50’s by some of the

earliest practitioners of quantum many-body theory, leading eventually to an understanding

of the mechanism underlying superconductivity. Recall that the ions in a metal have two

basic effects on the electronic states: 1) the static ionic lattice provides a periodic potential

in which conduction electrons must move, leading to the evolution of plane wave states

in the Fermi gas into Bloch waves in the crystal, and 2) the scattering of electrons by

lattice vibrations, and vice versa. The first effect will be ignored here, as we are essentially

interested in long-wavelength phenomena, where the differences between proper calculations

using Bloch waves and simpler ones using plane waves are negligible. It suffices then to

consider the phonons in a lattice interacting with a Fermi gas in which the most important

effects of the long-range Coulomb interaction have been accounted for. Without the Coulomb

interaction, the phonon frequencies are just those we would get from a classical model of

balls of mass M (ionic mass) connected by springs. For a 3D solid with 1 atom per unit

cell, there are 3N normal modes comprising 3 acoustic phonon branches ωλk . When one

includes the long-range Coulomb interaction but neglects the electron-phonon coupling, one

finds that the longitudinal acoustic mode has been lifted to the ionic plasma frequency,

ωionpl ≃ (4πZ2e2n/M)1/2. The terms of the Goldstone theorem which insists on the existence

of an acoustic mode for each spontaneously broken continuous symmetry are violated by the

long-range nature of the Coulomb force, and the sloshing back and forth of the ion “fluid"

at ωionpl occurs for the same reason and at the same frequency (up to the mass difference)

that it does in the electron case. At this point we are seriously worried that we don’t

understand how acoustic phonons ever exist in charged systems. If one now includes the

electron- phonon coupling, however, the electronic medium screens the long-range Coulomb

interaction, leading to a finite interaction length and the recovery of the Goldstone (acoustic)

mode.

Let’s give a brief overview of where we’re going. I first want to get to the point where we

can write down the full Hamiltonian for the problem. We want to show that it makes sense

to write the Hamiltonian describing the electron-phonon system as

H = H0
el +H0

ph +Hcoul +Hint, (333)
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where

H0
el =

∑
kσ

ξkc
†
kσckσ (334)

H0
ph =

∑
kλ

ωkλ(a
†
kλakλ +

1

2
) (335)

HCoul =
1

2

∑
kk′q
σσ′

V (q)c†k′+qσ′c
†
kσck+qσck′σ′ (336)

Hint =
∑
kk′σλ

gkk′c
†
kσck′σ(a

†
−qλ + aqλ) (337)

where a†kλ creates a phonon with wave vector q ≡ k′−k and polarization λ, and gkk′ ∝M−1/2

is the bare electron-phonon coupling. The unperturbed phonon Hamiltonian Hph is of course

just the sum of 3N independent harmonic oscillators in 2nd quantized form, and the bare

Coulomb matrix element in HCoul is V (q) = 4πe2/q2. The derivation of the electron-phonon

Hamiltonian Hint and its quantization is relatively straightforward, and I will sketch it here.

4.1.1 Derivation of e−-ph coupling

Assume the ion is located at position Ri, at a displacement ui from its equilibrium position

R0
i . If the potential of the ion is assumed to be rigid, the interaction energy of the electronic

charge density with the ions is simply84

Hint =
∑
iσ

∫
d3rψ†

σ(r)ψσ(r)V (r−Ri). (338)

For small amplitude vibrations, we can expand in powers of ui:

Hint =
∑
iσ

∫
d3rψ†

σ(r)ψσ(r)V (r−R0
i )

+
∑
iσ

∫
d3rψ†

σ(r)ψσ(r)ui · ∇Ri
V (r−Ri)|R0

i
+ . . . (339)

Now expand the field operators ψσ in terms of Bloch waves:

ψσ(r) =
∑
k

ckσϕk(r), (340)

where

ϕkσ(r+R0
i ) = eik·R

0
iϕk(r) (341)

84This is for a Bravais lattice. If there is a basis one has to be a bit careful about labelling the lattice sites with additional

intracell indices, i.e. Riα, α = 1 . . .m, where m is number of atoms/cell.
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so the quantity which appears in Eq. (339) may be recast by performing a shift by a Bravais

lattice vector and using the periodicity of ∇R0
i
V (r−R0

i ),∫
d3rϕ∗

k′σ(r)ϕkσ(r)∇R0
i
V (r−R0

i )

=

∫
d3rϕ∗

k′σ(r+R0
j)ϕkσ(r+R0

j )∇R0
i
V (r−R0

i )

= ei(k−k′)·R0
j

∫
d3rϕ∗

k′σ(r)ϕkσ(r)∇R0
i
V (r−R0

i )︸ ︷︷ ︸ (342)

Wkk′ (343)

Now let us 2nd-quantize the displacement u as we did when we were discussing the isolated

phonon system,85

ui(t) =
1√
NM

∑
qλ

Q(k, t)eλ(q)eiq·R
0
i (345)

with

Qλ(q) =
1√

2ωλ(q)

(
aλ(q) + a†λ(−q)

)
(346)

so interaction Hamiltonian can be rewritten

Hint =
∑
kk′σ

c†k′σckσ
∑
j

Wkk′ei(k−k′)·R0
j

1√
NM

×

×
∑
qλ

Qλ(q)e
λ(q)eiq·R

0
j

=
∑
kk′σ

∑
λ

c†k′σckσ
(
Wkk′ · eλ(q)

)
Qλ(q)

√
N

M

≡
∑
kk′σλ

gkk′λc
†
k′σckσ

(
aλ(q) + a†λ(−q)

)
(347)

where now q due to momentum conservation (δ-function from summing over j) is to be

interpreted as

q = k− k′ +G (348)

with G is a vector of reciprocal lattice (arose because q was defined to lie in 1st B-zone).

The electron-phonon coupling constant is

gkk′λ =
(
Wkk′ · eλ(q)

)√ N

2Mωλ(q)
, (349)

which contains the original ball-and-spring phonon frequencies ωλ. We have left out the

Coulomb interactions, however, so at first sight it appears as though this expression should
85Before we dealt primarily with the 1D chain, so I suppressed the polarization indices. It is important to recall that in a

3 dimensional system there are 3N normal modes (3mN if there are m atoms per unit cell). For each value of k there are 3

acoustic (optical only if there are add’l atoms per unit cell requiring index α) modes denoted by different values of the branch

index λ. The vectors eλ(k) are the polarization vectors of the modes and satisfy the orthogonality condition∑
α

eλα(k) · eλ
′

α (k) = δλλ′ (344)
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be modified by replacing ωλ by ωionpl if the mode is longitudinal and couples to the long-range

Coulomb interaction. This does not include the ionic screening yet, however (see below).

Regardless of the form of gkk′ , the final result is that an electron in state k, σ can undergo a

scattering process with amplitude gkk′ , ending up in final state k′, σ by absorption (emission)

of a phonon of momentum q. This form is useful, but calculating gkk′ from first principles

is difficult because V is poorly known.

4.1.2 Jellium model

We can get some dimensionally reasonable results in the so-called "jellium" model, where the

ions are represented as a featureless, positively charged elastic continuum,86 we will simply

replace the eigenfrequencies ωkλ of the neutral system by the constant ωionpl according to the

arguments given above. Again we expand the crystal potential V (r − Rj) around the equi-

librium sites R0
i . The dispacements u(R) in the jellium gives a charge density fluctuation87

−nZe∇ · u. This interacts with the electron gas through the Coulomb interaction, leading

to the interaction

Hjellium
int = Ze2

∑
σ

∫
d3rd3r′ ψ†

σ(r)ψσ(r)
1

|r− r′|
∇ · u(r′), (350)

and then quantizing the ionic displacements ui = Ri −R0
i as in Eq.(345), one finds

Hjellium
int =

∑
kk′σ

c†k′σckσ

(
aλ(q) + a†λ(−q)

) 4πiq · eλ(q)
M1/2

Ze2n

q2
(351)

Comparing with Eq. (347), we see that the effective e-ph coupling constant in an isotropic

system is

g(q) =
4πiZe2

q

√
N

2Mωionpl
=

4πiZe2n1/2

qM
1
2

. (352)

4.1.3 Screening.

The first point I would like to review is the renormalization of the electron-phonon coupling

which leads to screening and the recovery of the acoustic spectrum. The main point is to

realize that the singular behavior is due to the long-range Coulomb interaction, which will be

screened. Any time a phonon of momentum q is excited, it creates charge density fluctuations

because the ions are positively charged. These then interact with the electron gas. The bare

potential created by the charge fluctuation is proportional to the electron-phonon coupling
86... justified by the large masses and correspondingly long timescales for ionic motion (Born-Oppenheimer)
87Recall from E& M the polarization charge density is ρP = −∇ ·P, where P is the polarization, and the polarization due to

a density n of dipole moments p = Zeu is therefore nZeu.
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constant, so screening the ionic charge amounts to replacing the bare coupling g with a

screened coupling

ḡ(q, ωn) = g(q)/ϵ(q, ωn), (353)

where q = k′−k and ϵ(q, ωn) = 1−V (q)χ(q, ωn) is the RPA dielectric constant. The frequency

dependence of the dielectric constant will become important for us on scales of the Debye

frequency ωD or smaller, and this is normally a very small scale by electronic standards! So

for most purposes we keep a frequency-independent screened coupling ḡ(q) ≃ g(q)/ϵ(q, 0).

We would like to see that this screening recovers acoustic modes as observed and expected.

The bare interaction Hamiltonian may be written in the Jellium model as (see Eq. (347)

Hint =
∑
q

g(q)n−qQq (354)

with nq =
∑

q c
†
k+qck. Consider now the entire Hamiltonian for the phonon coordinates,

including the coupling to the electron gas (recall derivation of normal modes for linear chain

in Section 1):

Hph +Hint =
1

2

∑
q

(
1

M
PqP−q +Mωionpl

2
QqQ−q + 2gqQqn−q

)
(355)

The Heisenberg equation of motion for the operator Qq becomes (check!)

Q̈q + ωionpl
2
Qq + g−qnq = 0 (356)

We noted above that the ionic charge density fluctuation induced by an ionic displacement

u was enion = −nZe∇ · u; in Fourier space with Eq. (345) this reads

nionq = −iZ
√

n

M
qQq (357)

Also recall the definition of the dielectric constant

ϵ =
“external charge"

total charge
. (358)

Now the total charge fluctuation is just electronic + ionic nq + nionq , so

nq = nionq (1− 1/ϵ) = −iZ
√

n

M
qQq(1− 1/ϵ) (359)

= iZ

√
n

M
qQq

(
k2TF

q2 + k2TF

)
, (360)

where in the last step we have used the Thomas-Fermi approximation for the dielectric

function, ϵ = 1 + k2TF/q
2.

ω2
phonon = ωionpl

2
[
1− k2TF

q2 + k2TF

]
. (361)
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Equation of motion becomes

0 = Q̈q + ωionpl
2
Qq +

(
4πiZe2n1/2

qM
1
2

)
︸ ︷︷ ︸ iZ

√
n

M
qQq

(
k2TF

q2 + k2TF

)

= Q̈q + ωionpl
2
[
1−

(
k2TF

q2 + k2TF

)]
Qq. (362)

So the phonon oscillation frequencies are

ω2
phonon = ωionpl

2
(

q2

q2 + k2TF

)
(363)

Since k2TF = 6πne2/EF , we do in fact recover acoustic phonons iωn = cq as q → 0, with

speed

c = (m/3M)1/2vF . (364)

So we have proven that sound propagates in a metal, which you already knew, but it is

important to remember that screening makes it happen!

4.2 Polarons
4.2.1 Polaron in 1D.

A polaron is formed when an electron has a bound state in the potential created by the ionic

lattice distorted around itself due to its own charge. Consider a single electron in 1D, and

represent the crystal lattice by “jellium", i.e. a positive continuum. The potential felt by the

electron is V = −λdu/dx, where λ is the electron-phonon coupling constant and u(x) is the

(smoothed) displacement of the ions from their equilibrium positions. The energy density

associated with the deformation is (B/2)(du/dx)2, where B is the bulk modulus.

1. Write down the appropriate Schrödinger equation, assuming that the lattice distortion

takes the form u = u0 tanhx/a0. Find the eigenenergies. (Hint: you may find the

change of variables x→ r = tanhx/a0 helpful.)

Solution: Schrödinger equation is

−1

2m

∂2ψ

∂x2
− V0

cosh2 x
a0

ψ = Eψ, (365)

with V0 = λu0/a0. Introduce new variable r = tanhx/a0. Eqn. becomes[
∂

∂r
(1− r2)

∂

∂r
+

2ma20E

1− r2
+ 2ma20V0

]
ψ = 0. (366)

Now define 2ma20V0 ≡ ℓ(ℓ+ 1) and µ =
√
−2ma20E. Left with[

∂

∂r
(1− r2)

∂

∂r
− µ2

1− r2
+ ℓ(ℓ+ 1)

]
ψ = 0 (367)
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and we have Legendre’s equation. Eigenfunctions with appropriate falloff conditions

at ∞ are P µ
ℓ and eigenvalues are determined by condition µ − ℓ = n, with n integer

n = 0, 1, 2 . . . . (⋆ Note maximum n set by n = ℓ = (1/2)
(
−1 +

√
1 + 8ma20V0

)
. See,

e.g. Landau-Lifschitz, QM).

Substituting back for E one obtains

Eel =
−1

8ma20

[
−(1 + 2n) +

√
1 + 8ma20V0

]2
, (368)

with n = 0, 1, 2 . . . . The ground state energy is therefore

Eel =
−1

8ma20

[
−1 +

√
1 + 8ma20V0

]2
. (369)

For attractive electron-phonon interactions (i.e. λ > 0 with current convention), ground

state has negative energy, so electron can always gain energy by “digging a hole" in the

lattice. Must also calculate lattice energy:

Eph =
1

2

∫
B

(
∂u

∂x

)2

=
1

2

Bu20
a0

∫
dy

cosh4 y
=

2

3

Bu20
a0

. (370)

2. Calculate the total energy of the coupled e−-ph system E = Eph + Ee.

Solution: Introduce dimensionless variables s and t by u0 = 3λs/(2B2) and a0 =

B2t/(12mλ2). Then the total energy is

E = −(
√
1 + st− 1)2 + s2/t (371)

3. By minimizing E with respect to u0 and a0, show that the system is always unstable to

polaron formation if λ > 0. Calculate the size of the polaron a0.

Solution: Energy minimized at s=1/3, t=24.
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Figure 29: Contours for total polaron energy.

Transform back ⇒ u0 = λ/B, a0 = B/(mλ) .
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N.B. Physics: Size of polaron is larger for rigid lattices (large B) or weak electron-

phonon interaction (small B). Note we have only taken a trial solution for the ionic

distortion, not solved the whole problem! Even within this trial space, note our solution

breaks down when u0/a0 = mλ3/B2 ≃ 1, because the harmonic approximation does.

4.3 Bloch resistivity

4.4 Effective e− − e− interaction

For superconductivity it will be important to understand why one electron attracts each

other effectively by polarizing the lattice. We now have at our disposal the effective screened

electron-phonon interaction with coupling constant gkk′ and renormalized phonon frequencies

ωλ(q). An interaction between electrons must involve the 1st electron polarizing the lattice,

and the second interacting with this polarization, i.e. it must be a 2nd-order process in the

coupling constant g. We can represent these processes in terms of Feynman-type pictures:

The amplitude of the first process, according to 2nd-order perturbation theory, where the

q -q

k p

k-q p+q k-q p+q

k p

g g g g

Figure 30: Electron-electron interaction due to phonon exchange. Straight lines are electrons, wiggly are

phonons, vertices are e-ph coupling constants g.

1st electron emits a phonon, is

V 1
q =

|gq|2

ϵk − ϵk−q − ωq

(372)

whereas for the process where it absorbs a phonon we get

V 2
q =

|gq|2

ϵp − ϵp+q − ωq

. (373)

Note as usual we have energy conservation at every scattering event depicted in these pro-

cesses, i.e.

ϵk + ϵp = ϵk−q + ϵp+q (374)
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and I’ve assumed ωq = ω−q. According to quantum mechanics the two amplitudes contribute

additively:

Vq = V 1
q + V 2

q ==
|gq|2ωq

(ϵk − ϵk−q)2 − ω2
q

. (375)

Let’s analyze this expression for the “effective electron-electron interaction" qualitatively.

We will primarily be interested in ϵk−ϵk−q ≪ ωq, since this situation corresponds to electrons

with their momenta both quite close to the Fermi surface, well within a shell of width ωD, a

typical phonon energy.

• attractive

• ind. of k ⇒ isotropic

• rapidly decreases when ϵk − ϵk−q ∼ ωD.

• energy space: interaction spread over ωD ⇒ in time space it’s retarded

• comparable when spread over time to Coulomb interactions: some metals supercon-

ducting, some not.

Check prefactor of deGennes calculation–should lead to

V =
4πe2

q2 + k2TF

ω2
q

ω2
q + k2TF

(376)

5 Superconductivity

5.1 Phenomenology

Superconductivity was discovered in 1911 in the Leiden laboratory of Kamerlingh Onnes,

who noticed that the resistivity of Hg metal vanished abruptly at about 4K. Although

phenomenological models with predictive power were developed in the 30’s and 40’s, the mi-

croscopic mechanism underlying superconductivity was not discovered until 1957 by Bardeen

Cooper and Schrieffer. Superconductors have been studied intensively for their fundamen-

tal interest and for the promise of technological applications which would be possible if a

material which superconducts at room temperature were discovered. Until 1986, critical tem-

peratures (Tc’s) at which resistance disappears were always less than about 23K. In 1986,

Bednorz and Mueller published a paper, subsequently recognized with the 1987 Nobel prize,

for the discovery of a new class of materials which currently include members with Tc’s of

about 135K.
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Figure 31: Properties of superconductors.

Superconducting materials exhibit the following unusual behaviors:

1. Zero resistance. Below a material’s Tc, the DC electrical resistivity ρ is really zero,

not just very small. This leads to the possibility of a related effect,

2. Persistent currents. If a current is set up in a superconductor with multiply connected

topology, e.g. a torus, it will flow forever without any driving voltage. (In practice

experiments have been performed in which persistent currents flow for several years

without signs of degrading).

3. Perfect diamagnetism. A superconductor expels a weak magnetic field nearly com-

pletely from its interior (screening currents flow to compensate the field within a surface

layer of a few 100 or 1000 A, and the field at the sample surface drops to zero over this

layer).

4. Energy gap. Most thermodynamic properties of a superconductor are found to vary as

e−∆/(kBT ), indicating the existence of a gap, or energy interval with no allowed eigenen-

ergies, in the energy spectrum. Idea: when there is a gap, only an exponentially small

number of particles have enough thermal energy to be promoted to the available unoccu-
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pied states above the gap. In addition, this gap is visible in electromagnetic absorption:

send in a photon at low temperatures (strictly speaking, T = 0), and no absorption is

possible until the photon energy reaches 2∆, i.e. until the energy required to break a

pair is available.

5.2 Electron-phonon interaction

Superconductivity is due to an effective attraction between conduction electrons. Since two

electrons experience a repulsive Coulomb force, there must be an additional attractive force

between two electrons when they are placed in a metallic environment. In classic supercon-

ductors, this force is known to arise from the interaction with the ionic system. In previous

discussion of a normal metal, the ions were replaced by a homogeneous positive background

which enforces charge neutrality in the system. In reality, this medium is polarizable– the

number of ions per unit volume can fluctuate in time. In particular, if we imagine a snapshot

of a single electron entering a region of the metal, it will create a net positive charge density

near itself by attracting the oppositely charged ions. Crucial here is that a typical electron

close to the Fermi surface moves with velocity vF = ℏkF/m which is much larger than the

velocity of the ions, vI = VFm/M . So by the time (τ ∼ 2π/ωD ∼ 10−13 sec) the ions have po-

larized themselves, 1st electron is long gone (it’s moved a distance vF τ ∼ 108cm/s ∼ 1000
◦
A,

and 2nd electron can happen by to lower its energy with the concentration of positive charge

before the ionic fluctuation relaxes away. This gives rise to an effective attraction between

the two electrons as shown, which may be large enough to overcome the repulsive Coulomb

interaction. Historically, this electron-phonon “pairing" mechanism was suggested by Frölich

in 1950, and confirmed by the discovery of the “isotope effect", wherein Tc was found to vary

as M−1/2 for materials which were identical chemically but which were made with different

isotopes.

Figure 32: Effective attraction of two electrons due to “phonon exchange"

The simplest model for the total interaction between two electrons in momentum states

k and k′, with q ≡ k− k′, interacting both by direct Coulomb and electron-phonon forces,
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is given by

V (q, ω) =
4πe2

q2 + k2s
+

4πe2

q2 + k2s

ω2
q

ω2 − ω2
q

, (377)

in the jellium model. Here first term is Coulomb interaction in the presence of a medium with

dielectric constant ϵ = 1 + k2s/q
2, and ωq are the phonon frequencies. The screening length

k−1
s is 1A or so in a good metal. Second term is interaction due to exchange of phonons,

i.e. the mechanism pictured in the figure. Note it is frequency-dependent, reflecting the

retarded nature of interaction (see figure), and in particular that the 2nd term is attractive

for ω < ωq ∼ ωD. Something is not quite right here, however; it looks indeed as though

the two terms are of the same order as ω → 0; indeed they cancel each other there, and V

is seen to be always repulsive. This indicates that the jellium approximation is too simple.

We should probably think about a more careful calculation in a real system as producing

two equivalent terms, which vary in approximately the same way with kTF and ωq, but with

prefactors which are arbitrary. In some materials, then, the second term might “win" at

low frequencies, depending on details. The BCS interaction is sometimes referred to as a

“residual" attraction, i.e. what is left when the long-range Coulomb interaction is accounted

for.

5.3 Cooper problem

A great deal was known about the phenomenology of superconductivity in the 1950’s, and it

was already suspected that the electron phonon interaction was responsible, but the micro-

scopic form of the wave function was unknown. A clue was provided by Leon Cooper, who

showed that the noninteracting Fermi sea is unstable towards the addition of a single pair of

electrons with attractive interactions. Cooper began by examining the wave function of this

pair ψ(r1, r2), which can always be written as a sum over plane waves

ψ(r1, r2) =
∑
kq

uk(q)e
ik·r1e−i(k+q)·r2ζ (378)

where the uk(q) are expansion coefficients and ζ is the spin part of the wave function, either

the singlet | ↑↓ − ↓↑> /
√
2 or one of the triplet, | ↑↑>, | ↓↓>, | ↑↓ + ↓↑> /

√
2. In fact since

we will demand that ψ is the ground state of the two-electron system, we will assume the wave

function is realized with zero center of mass momentum of the two electrons, uk(q) = ukδq,0.

Here is a quick argument related to the electron-phonon origin of the attractive interaction.88

The electron-phonon interaction is strongest for those electrons with single-particle energies

ξk within ωD of the Fermi level. In the scattering process depicted in Fig. 33, momentum is
88Thanks to Kevin McCarthy, who forced me to think about this further
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Figure 33: Electrons scattered by phonon exchange are confined to shell of thickness ωD about Fermi surface.

explicitly conserved, i.e. the total momentum

k+ p = K (379)

is the same in the incoming and outgoing parts of the diagram. Now look at Figure 34, and

note that if K is not ∼ 0, the phase space for scattering (attraction) is dramatically reduced.

So the system can always lower its energy by creating K = 0 pairs. Henceforth we will make

this assumption, as Cooper did.

-pKk

ω
D

Figure 34: To get (attractive) scattering with finite cm momentum K, need both electron energies to be

within ωD of Fermi level– very little phase space.

Then ψ(r1, r2) becomes
∑

k uke
ik·(r1−r2). Note that if uk is even in k, the wave function

has only terms ∝ cos k · (r1− r2), whereas if it is odd, only the sin k · (r1− r2) will contribute.

This is an important distinction, because only in the former case is there an amplitude for

the two electrons to live "on top of each other" at the origin. Note further that in order to

preserve the proper overall antisymmetry of the wave function, uk even (odd) in k implies

the wave function must be spin singlet (triplet). Let us assume further that there is a general
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two-body interaction between the two electrons (the rest of the Fermi sea is noninteracting

in the model!) V (r1, r2), so that the Hamiltonian for the system is

H = −∇2
1

2m
− ∇2

2

2m
+ V (r1, r2). (380)

Inserting the assumed form of ψ into the Schrödinger equation Hψ = Eψ, and Fourier

transforming both sides with respect to the relative coordinate, r = r1 − r2, we find

(E − 2ϵk)uk =
∑
k>kF

Vkk′uk′ , (381)

where ϵk = k2/2m and the Vkk′ =
∫
d3rV (r)ei(k

′−k)·r are the matrix elements of the two-body

interaction.

Recall k, k′ correspond to energies at the Fermi level ϵF in the absence of V . The question

was posed by Cooper, is it possible to find an eigenvalue E < 2ϵF , i.e. a bound state of the

two electrons? To simplify the problem, Cooper assumed a model form for Vkk′ in which

Vkk′ =

 −V ξk, ξk′ < ωc

0 otherwise
(382)

where as usual ξk ≡ ϵk − ϵF . The BCS interaction Vkk′ is sometimes referred to as a “resid-

ual" attractive interaction, i.e. the attractive, short-distance part left when the long-range

Coulomb interaction has been subtracted out, as in (377). The bound state equation becomes

uk =

V
∑
k′

′uk′

2ϵk − E
, (383)

where the prime on the summation in this context means sum only over k such that ϵF <

ϵk < ϵF + ωc. Now uk may be eliminated from the equation by summing both sides
∑
k

′,

yielding

1

V
=

∑
k

′ 1

2ϵk − E
(384)

≃ N0

∫ ϵF+ωc

ϵF

dϵ
1

2ϵ− E
=

1

2
N0 log

2ϵF + 2ωc − E

2ϵF − E
. (385)

For a weak interaction N0V ≪ 1, we expect a solution (if at all) just below the Fermi level,

so we treat 2ϵF − E as a small positive quantity, e.g. negligible compared to 2ωc. We then

arrive at the pair binding energy

∆Cooper ≡ 2ϵF − E ≃ 2ωce
−2/N0V . (386)

There are several remarks to be made about this result.

1. Note (for your own information–Cooper didn’t know this at the time!) that the depen-

dence of the bound state energy on both the interaction V and the cutoff frequency ωc
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strongly resembles the famous BCS transition temperature dependence, with ωc identi-

fied as the phonon frequency ωD, as given in equation (I.1).

2. the dependence on V is that of an essential singularity, i.e. a nonanalytic function

of the parameter. Thus we may expect never to arrive at this result at any order in

perturbation theory, an unexpected problem which hindered theoretical progress for a

long time.

3. The solution found has isotropic or s-symmetry, since it doesn’t depend on the k̂ on

the Fermi surface. (How would an angular dependence arise? Look back over the

calculation.)

4. Note the integrand (2ϵk−E)−1 = (2ξk+∆Cooper)
−1 peaks at the Fermi level with energy

spread ∆Cooper of states involved in the pairing. The weak-coupling (N0V ≪ 1) solution

therefore provides a bit of a posteriori justification for its own existence, since the fact

that ∆Cooper ≪ ωc implies that the dependence of Vkk′ on energies out near the cutoff

and beyond is in fact not terribly important, so the cutoff procedure used was ok.

5. The spread in momentum is therefore roughly ∆Cooper/vF , and the characteristic size

of the pair (using Heisenberg’s uncertainty relation) about vF/Tc. This is about 100-

1000A in metals, so since there is of order 1 electron/ unit cell in a metal, and if this

toy calculation has anything to do with superconductivity, there are certainly many

electron pairs overlapping each other in real space in a superconductor.

5.4 Pair condensate & BCS Wavefctn.

Obviously one thing is missing from Cooper’s picture: if it is energetically favorable for

two electrons in the presence of a noninteracting Fermi sea to pair, i.e. to form a bound

state, why not have the other electrons pair too, and lower the energy of the system still

further? This is an instability of the normal state, just like magnetism or charge density wave

formation, where a ground state of completely different character (and symmetry) than the

Fermi liquid is stabilized. The Cooper calculation is a T=0 problem, but we expect that

as one lowers the temperature, it will become at some critical temperature Tc energetically

favorable for all the electrons to pair. Although this picture is appealing, many things about

it are unclear: does the pairing of many other electrons alter the attractive interaction which

led to the pairing in the first place? Does the bound state energy per pair change? Do all

of the electrons in the Fermi sea participate? And most importantly, how does the critical

temperature actually depend on the parameters and can we calculate it?
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5.5 BCS Model.

A consistent theory of superconductivity may be constructed either using the full “effective

interaction" or our approximation V (q, ω) to it. However almost all interesting questions

can be answered by the even simpler model used by BCS. The essential point is to have

an attractive interaction for electrons in a shell near the Fermi surface; retardation is sec-

ondary. Therefore BCS proposed starting from a phenomenological Hamiltonian describing

free electrons scattering via an effective instantaneous interaction à la Cooper:

H = H0 − V
∑
kk′q
σσ′

′
c†kσc

†
−k+qσ′c−k′+qσ′ck′σ, (387)

where the prime on the sum indicates that the energies of the states k and k′ must lie in the

shell of thickness ωD. Note the interaction term is just the Fourier transform of a completely

local 4-Fermi interaction ψ†(r)ψ†(r)ψ(r)ψ(r).89

Recall that in our discussion of the instability of the normal state, we suggested that an

infinitesimal pair field could produce a finite amplitude for pairing. That amplitude was

the expectation value ⟨c†kσc
†
−k−σ⟩. We ignore for the moment the problems with number

conservation, and ask if we can simplify the Hamiltonian still further with a mean field

approximation, again to be justified a posteriori. We proceed along the lines of generalized

Hartree-Fock theory, and rewrite the interaction as

c†kσc
†
−k+qσ′c−k′+qσ′ck′σ = [⟨c†kσc

†
−k+qσ′⟩+ δ(c†c†)]×

×[⟨c−k′+qσ′ck′σ⟩+ δ(cc)], (388)

where, e.g. δ(cc) = c−k′+qσ′ck′σ − ⟨c−k′+qσ′ck′σ⟩ is the fluctuation of this operator about its

expectation value. If a mean field description is to be valid, we should be able to neglect

terms quadratic in the fluctuations when we expand Eq (20). If we furthermore make the

assumption that pairing will take place in a uniform state (zero pair center of mass momen-

tum), then we put ⟨c−k′+qσ′ck′σ⟩ = ⟨c−k′σ′ck′σ⟩δq,0. The effective Hamiltonian then becomes

(check!)

H ≃ H0 − (∆
∑
k

c†k↑c
†
−k↓ + h.c.) + ∆⟨c†k↑c

†
−k↓⟩

∗, (389)

where

∆ = V
∑
k

′
⟨c−k↓ck↑⟩, (390)

and the primed sum indicates that the sum is taken only over the k-shell of width ωD over

which V acts. What BCS (actually Bogoliubov, after BCS) did was then to treat the order
89Note this is not the most general form leading to superconductivity. Pairing in higher angular momentum channels requires

a bilocal model Hamiltonian, as we shall see later.
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parameter ∆ as a (complex) number, and calculate expectation values in the approximate

Hamiltonian (389), insisting that ∆ be determined self-consistently via Eq. (390) at the

same time.90

5.5.1 BCS wave function, gauge invariance, and number conservation.

What BCS actually did in their original paper is to treat the Hamiltonian (387) variationally.

Their ansatz for the ground state of (387) is a trial state with the pairs k ↑,−k ↓ occupied

with amplitude vk and unoccupied with amplitude uk, such that |uk|2 + |vk|2 = 1:

|ψ >= Πk(uk + vkc
†
k↑c

†
−k↓)|0 > . (391)

This is a variational wave function, so the energy is to be minimized over the space of uk, vk.

Alternatively, one can diagonalize the Hartree-Fock (BCS) Hamiltonian directly, together

with the self-consistency equation for the order parameter; the two methods turn out to

be equivalent. I will follow the latter procedure, but first make a few remarks on the form

of the wave function. First, note the explicit violation of particle number conservation:

|ψ > is a superposition of states describing 0, 2, 4 , N-particle systems.91 In general a

quantum mechanical system with fixed particle number N (like, e.g. a real superconductor!)

manifests a global U(1) gauge symmetry, because H is invariant under c†kσ → eiθc†kσ. The

state |ψ > is characterized by a set of coefficients {uk, vk}, which becomes {uk, e2iθvk} after

the gauge transformation. The two states |ψ > and ψ(ϕ), where ϕ = 2θ, are inequivalent,

mutually orthogonal quantum states, since they are not simply related by a multiplicative

phase factor.92 Since H is independent of ϕ, however, all states |ψ(ϕ) > are continuously

degenerate, i.e. the ground state has a U(1) gauge (phase) symmetry. Any state |ψ(ϕ) > is

said to be a broken symmetry state, becaue it is not invariant under a U(1) transformation,

i.e. the system has "chosen" a particular ϕ out of the degenerate range 0 < ϕ < 2π.

Nevertheless the absolute value of the overall phase of the ground state is not an observable,

but its variations δϕ(r, t) in space and time are. It is the rigidity of the phase, i.e. the energy

cost of any of these fluctuations, which is responsible for superconductivity.

Earlier I mentioned that it was possible to construct a number conserving theory. It is

now instructive to see how: states of definite number are formed [Anderson 1958] by making
90If the pairing interaction is momentum dependent the self-consistency or “gap" equation reads ∆k =

∑′
k′ Vkk′ ⟨c−k′↓ck′↑⟩,

which reduces to (390) if one sets Vkk′ = V .
91What happened to the odd numbers? In mesoscopic superconductors, there are actually differences in the properties of

even and odd-number particle systems, but for bulk systems the distinction is irrelevant.
92In the normal state, |ψ > and ψ(ϕ) differ by a global multiplicative phase eiθ, which has no physical consequences, and the

ground state is nondegenerate.
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coherent superpositions of states of definite phase

|ψ(N) >=

∫ 2π

0

dϕeiϕN/2|ψ(ϕ) > . (392)

[The integration over ϕ gives zero unless there are in the expansion of the product contained

in |ψ > precisely N/2 pair creation terms, each with factor exp iϕ.] Note while this state has

maximal uncertainty in the value of the phase, the rigidity of the system to phase fluctuations

is retained.93

It is now straightforward to see why BCS theory works. The BCS wave function |ψ >

may be expressed as a sum |ψ >=
∑

N aN |ψ(N) > [Convince yourself of this by calculating

the aN explicitly!]. IF we can show that the distribution of coefficients aN is sharply peaked

about its mean value < N >, then we will get essentially the same answers as working with

a state of definite number N =< N >. Using the explicit form (391), it is easy to show

⟨N⟩ = ⟨ψ|
∑
kσ

nkσ|ψ⟩ = 2
∑
k

|vk|2 ; ⟨(N − ⟨N⟩)2⟩ =
∑
k

u2kv
2
k. (393)

Now the uk and vk will typically be numbers of order 1, so since the numbers of allowed

k-states appearing in the k sums scale with the volume of the system, we have ⟨N⟩ ∼ V ,

and ⟨(N − ⟨N⟩)2⟩ ∼ V . Therefore the width of the distribution of numbers in the BCS state

is ⟨(N − ⟨N⟩)2⟩1/2/⟨N⟩ ∼ N−1/2. As N → 1023 particles, this relative error implied by the

number nonconservation in the BCS state becomes negligible.

5.5.2 Is the BCS order parameter general?

Before leaving the subject of the phase in this section, it is worthwhile asking again why we

decided to pair states with opposite momenta and spin, k ↑ and −k ↓. The BCS argument

had to do 1) with minimizing the energy of the entire system by giving the Cooper pairs

zero center of mass momentum, and 2) insisting on a spin singlet state because the phonon

mechanism leads to electron attraction when the electrons are at the same spatial position

(because it is retarded in time!), and a spatially symmetric wavefunction with large amplitude

at the origin demands an antisymmetric spin part. Can we relax these assumptions at all?

The first requirement seems fairly general, but it should be recalled that one can couple

to the pair center of mass with an external magnetic field, so that one will create spatially

inhomogeneous (finite-q) states with current flow in the presence of a magnetic field. Even

in zero external field, it has been proposed that systems with coexisting antiferromagnetic

correlations could have pairing with finite antiferromagnetic nesting vector Q⃗ [Baltensberger

and Strässler 1963]. The requirement for singlet pairing can clearly be relaxed if there is
93The phase and number are in fact canonically conjugate variables, [N/2, ϕ] = i, where N = 2i∂/∂ϕ in the ϕ representation.
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a pairing mechanism which disfavors close approach of the paired particles. This is the

case in superfluid 3He, where the hard core repulsion of two 3He atoms supresses Tc for

s-wave, singlet pairing and enhances Tc for p-wave, triplet pairing where the amplitude for

two particles to be together at the origin is always zero.

In general, pairing is possible for some pair mechanism if the single particle energies cor-

responding to the states kσ and k′σ′ are degenerate, since in this case the pairing interaction

is most attractive. In the BCS case, a guarantee of this degeneracy for k ↑ and −k ↓ in zero

field is provided by Kramer’s theorem, which says these states must be degenerate because

they are connected by time reversal symmetry. However, there are other symmetries: in a

system with inversion symmetry, parity will provide another type of degeneracy, so k ↑, k ↓,

−k ↑ and −k ↓ are all degenerate and may be paired with one another if allowed by the pair

interaction.

5.6 Thermodynamics

5.6.1 Bogoliubov transformation

We now return to (389) and discuss the solution by canonical transformation given by Bo-

goliubov. After our drastic approximation, we are left with a quadratic Hamiltonian in the

c’s, but with c†c† and cc terms in addition to c†c’s. We can diagonalize it easily, however, by

introducing the quasiparticle operators γk0 and γk1 by

ck↑ = u∗kγk0 + vkγ
†
k1

c†−k↓ = −v∗kγk0 + ukγ
†
k1. (394)

You may check that this transformation is canonical (preserves fermion comm. rels.) if

|uk|2 + |vk|2 = 1. Substituting into (389) and using the commutation relations we get

HBCS =
∑
k

ξk[(|uk|2 − |vk|2)(γ†k0γk0 + γ†k1γk1) + 2|vk|2

+2u∗kv
∗
kγk1γk0 + 2ukvkγ

†
k1γ

†
k0]

+
∑
k

[(∆kukv
∗
k +∆∗

ku
∗
kvk)(γ

†
k0γk0 + γ†k1γk1 − 1)

+(∆kv
∗2
k −∆∗

ku
∗2
k )γk1γk0 + (∆∗

kv
2
k −∆ku

2
k)γ

†
k0γ

†
k1

+∆k⟨c†k↑c
†
−k↓⟩

∗, (395)

which does not seem to be enormous progress, to say the least. But the game is to eliminate

the terms which are not of the form γ†γ, so to be left with a sum of independent number-type

terms whose eigenvalues we can write down. The coefficients of the γ†γ† and γγ type terms
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are seen to vanish if we choose

2ξkukvk +∆∗
kv

2
k −∆ku

2
k = 0. (396)

This condition and the normalization condition |uk|2 + |vk|2 = 1 are both satisfied by the

solutions

|uk|2

|vk|2
=

1

2

(
1± ξk

Ek

)
, (397)

where I defined the Bogolibov quasiparticle energy

Ek =
√
ξ2k + |∆k|2. (398)

The BCS Hamiltonian has now been diagonalized:

HBCS =
∑
k

Ek

(
γ†k0γk0 + γ†k1γk1

)
+
∑
k

(
ξk − Ek +∆k⟨c†k↑c

†
−k↓⟩

∗
)
. (399)

Note the second term is just a constant, which will be important for calculating the ground

state energy accurately. The first term, however, just describes a set of free fermion excita-

tions above the ground state, with spectrum Ek.

5.6.2 Density of states

The Bogoliubov quasiparticle spectrum Ek is easily seen to have a minimum ∆k for a given

direction k on the Fermi surface defined by ξk = 0; ∆k therefore, in addition to playing

the role of order parameter for the superconducting transition, is also the energy gap in the

1-particle spectrum. To see this explicitly, we can simply do a change of variables in all

energy integrals from the normal metal eigenenergies ξk to the quasiparticle energies Ek:

N(E)dE = NN(ξ)dξ. (400)

If we are interested in the standard case where the gap ∆ is much smaller than the energy over

which the normal state dos NN(ξ) varies near the Fermi level, we can make the replacement

NN(ξ) ≃ NN(0) ≡ N0, (401)

so using the form of Ek from (398) we find

N(E)

N0

=

 E√
E2−∆2 E > ∆

0 E < ∆
. (402)

This function is sketched in Figure 35.
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Figure 35: a) Normalized density of states; b) Quasiparticle spectrum.

5.6.3 Critical temperature

The critical temperature is defined as the temperature at which the order parameter ∆k

vanishes. We can now calculate this with the aid of the diagonalized Hamiltonian. The

self-consistency condition is

∆∗
k = V

∑
k′

′
⟨c†k′↑c

†
−k′↓⟩

∗

= V
∑
k′

′
uk′v∗k′⟨1− γ†k0γk0 − γ†k1γk1⟩

= V
∑
k

′ ∆∗
k

2Ek

(1− 2f(Ek)) . (403)

Since 1− 2f(E) = tanh[E/(2T )], the BCS gap equation reads

∆∗
k = V

∑
k′

′ ∆∗
k′

2Ek′
tanh

Ek′

2T
(404)

This equation may now be solved, first for the critical temperature itself, i.e. the temperature

at which ∆ → 0, and then for the normalized order parameter ∆/Tc for any temperature

T . It is the ability to eliminate all normal state parameters from the equation in favor of

Tc itself which makes the BCS theory powerful. For in practice the parameters ωD, N0, and

particularly V are known quite poorly, and the fact that two of them occur in an exponential

makes an accurate first principles calculation of Tc nearly impossible. You should always be

suspicious of a theory which claims to be able to calculate Tc! On the other hand, Tc is easy

to measure, so if it is the only energy scale in the theory, we have a tool with enormous

predictive power.

First note that at Tc, the gap equation becomes

1

N0V
=

∫ ωD

0

dξk
1

ξk
tanh

ξk
2Tc

. (405)

This integral can be approximated carefully, but it is useful to get a sense of what is going on
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by doing a crude treatment. Note that since Tc ≪ ωD generally, most of the integrand weight

occurs for ξ > T , so we can estimate the tanh factor by 1. The integral is log divergent,

which is why the cutoff ωD is so important. We find
1

N0V0
≃ log

ω

Tc
⇒ Tc ≃ ωDe

−1/N0V (406)

The more accurate analysis of the integral gives the BCS result

Tc = 1.14ωDe
−1/N0V (407)

We can do the same calculation near Tc, expanding to leading order in the small quantity

∆(T )/T , to find ∆(T )/Tc ≃ 3.06(1− T/Tc)
1/2. At T = 0 we have

1

N0V
=

∫ ωD

0

dξk
1

Ek
=

∫ ωD

∆

dEN(E)/E (408)

=

∫ ωD

∆

dE
1√

E2 −∆2
≃ ln(2ωd/∆), (409)

so that ∆(0) ≃ 2ωD exp−1/N0V , or ∆(0)/Tc ≃ 1.76. The full temperature dependence of

∆(T ) is sketched in Figure 36). In the halcyon days of superconductivity theory, comparisons

∆

T
Tc

(T)1.76 Tc

Figure 36: BCS order parameter as fctn. of T .

with the theory had to be compared with a careful table of ∆/Tc painstakingly calculated

and compiled by Mühlschlegl. Nowadays the numerical solution requires a few seconds on a

PC. It is frequently even easier to use a phenomenological approximate closed form of the

gap, which is correct near T = 0 and = Tc:

∆(T ) = δscTctanh{
π

δsc

√
a
δC

CN
(
Tc
T

− 1)}, (410)

where δsc = ∆(0)/Tc = 1.76, a = 2/3, and δC/CN = 1.43 is the normalized specific heat

jump.94 This is another of the “universal" ratios which the BCS theory predicted and which

helped confirm the theory in classic superconductors.
94Note to evaluate the last quantity, we need only use the calculated temperature dependence of ∆ near Tc, and insert into

Eq. (47).
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5.6.4 Specific heat.

The gap in the density of states is reflected in all thermodynamic quantities as an activated

behavior e−∆/T , at low T , due to the exponentially small number of Bogoliubov quasiparticles

with thermal energy sufficient to be excited over the gap ∆ at low temperatures T ≪ ∆.

The electronic specific heat is particularly easy to calculate, since the entropy of the BCS

superconductor is once again the entropy of a free gas of noninteracting quasiparticles, with

modified spectrum Ek. The expression (II.6) then gives the entropy directly, and may be

rewritten

S = −kB
∫ ∞

0

dEN(E){f(E)lnf(E) + [1− f(E)]ln[1− f(E)]}, (411)

where f(E) is the Fermi function. The constant volume specific heat is just Cel,V =

T [dS/dT ]V , which after a little algebra may be written

Cel,V =
2

T

∫
dEN(E)(−∂f

∂E
)[E2 − 1

2
T
d∆2

dT
]. (412)

A sketch of the result of a full numerical evaluation is shown in Figure 31. Note the discon-

tinuity at Tc and the very rapid falloff at low temperatures.

It is instructive to actually calculate the entropy and specific heat both at low tempera-

tures and near Tc. For T ≪ ∆, f(E) ≃ e−E/T and the density of states factor N(E) in the

integral cuts off the integration at the lower limit ∆, giving C ≃ (N0∆
5/2/T 3/2)e−∆/T .95

Note the first term in Eq. (47)is continuous through the transition ∆ → 0 (and reduces to

the normal state specific heat (2π2/3)N0T above Tc), but the second one gives a discontinuity

at Tc of (CN −CS)/CN = 1.43, where CS = C(T−
c ) and CN = C(T+

c ). To evaluate (412), we

need the T dependence of the order parameter from a general solution of (404).

5.7 Electrodynamics

5.7.1 Linear response to vector potential

The existence of an energy gap is not a sufficient condition for superconductivity (actually, it

is not even a necessary one!). Insulators, for example, do not possess the phase rigidity which

leads to perfect conductivity and perfect diamagnetism which are the defining characteristics
95To obtain this, try the following:

• replace the derivative of Fermi function by exp-E/T

• do integral by parts to remove singularity at Delta

• expand around Delta E = Delta + delta E

• change integration variables from E to delta E

Somebody please check my answer!
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of superconductivity. We can understand both properties by calculating the current response

of the system to an applied magnetic or electric field.96 The kinetic energy in the presence

of an applied vector potential A is just

H0 =
1

2m

∑
σ

∫
d3rψ†

σ(r)[−i∇− (
e

c
)A]2ψσ(r), (413)

and the second quantized current density operator is given by

j(r) =
e

2m
{ψ†(r)(−i∇− e

c
A)ψ(r) + [(i∇− e

c
A)ψ†(r)]ψ(r)} (414)

= jpara −
e2

mc
ψ†(r)ψ(r)A, (415)

where

jpara(r) =
−ie
2m

{ψ†(r)∇ψ(r)− (∇ψ†(r))ψ(r)}, (416)

or in Fourier space,

jpara(q) =
e

m

∑
kσ

kc†k−qσckσ (417)

We would like to do a calculation of the linear current response j(q, ω) to the application

of an external field A(q, ω) to the system a long time after the perturbation is turned on.

Expanding the Hamiltonian to first order in A gives the interaction

H ′ =

∫
d3rjpara ·A =

e

mc

∑
kσ

k ·A(q)c†k−qσcqσ. (418)

The expectation value < j > may now be calculated to linear order via the Kubo formula,

yielding

⟨j⟩(q, ω) = K(q, ω)A(q, ω) (419)

with

K(q, ω) = −ne
2

mc
+ ⟨[jpara, jpara]⟩(q, ω). (420)

Note the first term in the current

jdia(q, ω) ≡ −ne
2

mc
A(q, ω) (421)

is purely diagmagnetic, i.e. these currents tend to screen the external field (note sign). The

second, paramagnetic term is formally the Fourier transform of the current-current correlation

function (correlation function used in the sense of our discussion of the Kubo formula).97

Here are a few remarks on this expression:
96To see this, note that we can choose a gauge where E = −(1/c)∂A/∂t = −iωA/c for a periodic electric field. Then the

Fourier component of the current is

j(q, ω) = σ(q, ω)E(q, ω) = K(q, ω)A(q, ω),

so σ(q, ω) = icK(q, ω)/ω.
97We will see that the first term gives the diamagnetic response of the system, and the second the temperature-dependent

paramagnetic response.
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• Note the simple product structure of (419) in momentum space implies a nonlocal rela-

tionship in general between j and A., i.e. j(r) depends on the A(r′) at many points r′

around r.98

• Note also that the electric field in a gauge where the electrostatic potential is set to zero

may be written E(q, ω) = −iωA(q, ω), so that the complex conductivity of the system

defined by j = σE may be written

σ(q, ω) =
i

ω
K(q, ω) (423)

• What happens in a normal metal? The paramagnetic second term cancels the diamag-

netic response at ω = 0, leaving no real part of K (Im part of σ), i.e. the conductivity

is purely dissipative and not inductive at ω,q = 0 in the normal metal.

5.7.2 Meissner Effect.

There is a theorem of classical physics proved by Bohr99 which states that the lowest energy

configuration of a system of charged particles in an external magnetic field carries zero

current. The essential element in the proof of this theorem is the fact that the magnetic forces

on the particles are always perpendicular to their velocities. In a quantum mechanical system,

the three components of the velocity do not commute in the presence of the field, allowing

for a finite current to be created in the ground state. Thus the existence of the Meissner

effect in superconductors, wherein magnetic flux is expelled from the interior of a sample

below its critical temperature, is a clear proof that superconductivity is a manifestation of

quantum mechanics.

The typical theorists’ geometry for calculating the penetration of an electromagnetic field

into a superconductor is the half-space shown in Figure 37, and compared to schematics of

practical experimental setups involving resonant coils and microwave cavities in Figs. 37

a)-c). In the gedanken experiment case, a DC field is applied parallel to the sample surface,

and currents and fields are therefore functions only of the coordinate perpendicular to the

surface, A = A(z), etc. Since we are interested in an external electromagnetic wave of

very long wavelength compared to the sample size, and zero frequency, we need the limit

ω = 0, q → 0 of the response. We will assume that in this limit K(0, 0) → const, which we
98If we transformed back, we’d get the convolution

j(r) =

∫
d3r′K(r, r′)A(r′) (422)

99See “The development of the quantum-mechanical electron theory of metals: 1928-33." L. Hoddeson and G. Baym, Rev.

Mod. Phys., 59, 287 (1987).
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Figure 37: a) Half-space geometry for penetration depth calculation; b) Resonant coil setup; c) Microwave

cavity

will call −(c/4π)λ−2 for reasons which will become clear! Equation (43) then has the form

j = − c

4π
λ−2A, (424)

This is sometimes called London’s equation, which must be solved in conjunction with

Maxwell’s equation

∇×B = −∇2A =
4π

c
j = −λ−2A, (425)

which immediately gives A ∼ e−z/λ, and B = B0e
−z/λ. The currents evidently screen the

fields for distances below the surface greater than about λ. This is precisely the Meiss-

ner effect, which therefore follows only from our assumption that K(0, 0) = const. A BCS

calculation will now tell us how the “penetration depth" λ depends on temperature.

Evaluating the expressions in (420) in full generality is tedious and is usually done with

standard many-body methods beyond the scope of this course. However for q = 0 the

calculation is simple enough to do without resorting to Green’s functions. First note that

the perturbing Hamiltonian H ′ may be written in terms of the quasiparticle operators (394)

as

H ′ = (426)

− e

mc

∑
k

k ·A(q)
[
(ukuk+q + vkvk+q)(γ

†
k+q0γk0 − γ†k+q1γk1)

+(vkuk+q − ukvk+q)(γ
†
k+q0γ

†
k1 − γk+q1γk0)

]

→

q→0

− e

mc

∑
k

k ·A(0)(γ†k0γk0 − γ†k1γk1) (427)

If you compare with the A = 0 Hamiltonian (399), we see that the new excitations of the
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system are

Ek0 → Ek −
e

mc
k ·A(0)

Ek1 → Ek +
e

mc
k ·A(0) (428)

We may similarly insert the quasiparticle operators (394) into the expression for the expec-

tation value of the paramagnetic current operator(417):

⟨jpara(q = 0)⟩ =
e

m

∑
k

k⟨(γ†k0γk0 − γ†k1γk1)⟩

=
e

m

∑
k

k (f(Ek0)− f(Ek1)) . (429)

We are interested in the linear response A → 0, so that when we expand wrt A, the

paramagnetic contribution becomes

⟨jpara(q = 0)⟩ = 2e2

m2c

∑
k

[k ·A(0)]k

(
− ∂f

∂Ek

)
. (430)

Combining now with the definition of the response function K and the diamagnetic current

(421), and recalling
∑

k → N0

∫
dξk(dΩ/4π), withN0 = 3n/(4ϵF )

100 and
∫
(dΩ/4π)kk = 1/3,

we get for the static homogeneous response is therefore

K(0, 0) =
−ne2

mc
{1−

∫
dξk(−∂f

∂Ek
)}1 (431)

≡ −ns(T )e2

mc
1 (432)

where in the last step, I defined the superfluid density to be ns(T ) ≡ n−nn(T ), with normal

fluid density

nn(T ) ≡ n

∫
dξk

(
−∂f
∂Ek

)
. (433)

Note at T = 0, −∂f/∂Ek → 0, [Not a delta function, as in the normal state case–do you

see why?], while at T = Tc the integral nn → 1.101 Correspondingly, the superfluid density

as defined varies between n at T = 0 and 0 at Tc. This is the BCS microscopic justification

for the rather successful phenomenological two-fluid model of superconductivity: the normal

fluid consists of the thermally excited Bogoliubov quasiparticle gas, and the superfluid is the

condensate of Cooper pairs.102

Now let’s relate the BCS microscopic result for the static homogeneous response to the

penetration depth appearing in the macroscopic electrodynamics calculation above. We find
100Here N0 is single-spin DOS!
101The dimensioness function nn(T/Tc)/n is sometimes called the Yoshida function, Y (T ), and is plotted in Fig.38.
102The BCS theory and subsequent extensions also allow one to understand the limitations of the two-fluid picture: for

example, when one probes the system at sufficiently high frequencies ω ∼ ∆, the normal fluid and superfluid fractions are no

longer distinct.
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Figure 38: a) Yoshida function; b) superfluid density ; c) penetration depth

immediately

λ(T ) = ( mc2

4πns(T )e2
)1/2. (434)

At T = 0, the supercurrent screening excludes the field from all of the sample except a

sheath of thickness λ(0). At small but finite temperatures, an exponentially small number of

quasiparticles will be excited out of the condensate, depeleting the supercurrent and allowing

the field to penetrate further. Both nn(T ) and λ(T ) − λ(0) may therefore be expected to

vary as e−∆/T for T ≪ Tc, as may be confirmed by explicit expansion of Eq. (433). [See

homework.] Close to Tc, the penetration depth diverges as it must, since in the normal state

the field penetrates the sample completely.

5.7.3 Dynamical conductivity.

The calculation of the full, frequency dependent conductivity is beyond the scope of this

course. If you would like to read an old-fashioned derivation, I refer you to Tinkham’s

book. The main point to absorb here is that, as in a semiconductor with a gap, at T = 0

there is no process by which a photon can be absorbed in a superconductor until its energy

exceeds 2∆, the binding energy of the pair. This “threshold" for optical absorption is one

of the most direct measurements of the gaps of the old superconductors. If one is interested

simply in the zero DC resistance state of superconductors, it is frustrating to find this is not

discussed often in textbooks. In fact, the argument is somewhat oblique. One notes that the

Ferrell-Tinkham-Glover sum rule
∫
dωσ(0, ω) = πne2/(2m) requires that the integral under

σ(q = 0, ω) be conserved when one passes through the superconducting transition. Thus the

removal of spectal weight below 2∆ (found in calculation of BCS conductivity, first by Mattis

and Bardeen) implies that the lost spectral weight must be compensated by a delta-function

in σ(ω) at ω = 0, i.e. infinite DC conductivity.
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5.8 GL Free Energy

While the BCS weak-coupling theory we looked at the last two weeks is very powerful, and

provides at least a qualitatively correct description of most aspects of classic superconduc-

tors,103 there is a complementary theory which a) is simpler and more physically transparent,

although valid only near the transition; and b) provides exact results under certain circum-

stances. This is the Ginzburg-Landau theory [ V.L. Ginzburg and L.D. Landau, Zh. Eksp.

Teor. Fiz. 20, 1064 (1950)], which received remarkably little attention in the west until

Gor’kov showed it was derivable from the BCS theory. [L.P. Gor’kov, Zh. Eksp. Teor Fiz.

36, 1918 (1959)]. The theory simply postulated the existence of a macrosopic quantum wave

function ψ(r) which was equivalent to an order parameter, and proposed that on symmetry

grounds alone, the free energy density of a superconductor should be expressible in terms of

an expansion in this quantity:

fs − fn
V

= a|ψ|2 + b|ψ|4 + 1

2m∗ |(∇+
ie∗

c
A⃗)ψ|2, (435)

where the subscripts n and s refer to the normal and superconducting states, respectively.

Let’s see why GL might have been led to make such a “guess". The superconducting-

normal transition was empirically known to be second order in zero field, so it was natural to

write down a theory analogous to the Landau theory of a ferromagnet, which is an expansion

in powers of the magnetization, M. The choice of order parameter for the superconductor

corresponding to M for the ferromagnet was not obvious, but a complex scalar field ψ was a

natural choice because of the analogy with liquid He, where |ψ|2 is known to represent the

superfluid density ns;104 a quantum mechanical density should be a complex wave function

squared. The biggest leap of GL was to specify correctly how electromagnetic fields (which

had no analog in superfluid He) would couple to the system. They exploited in this case

the similarity of the formalism to ordinary quantum mechanics, and coupled the fields in the

usual way to “charges" e∗ associated with “particles" of mass m∗. Recall for a real charge in

a magnetic field, the kinetic energy is:

< Ψ|Hkin|Ψ > = − 1

2m

∫
d3rΨ∗(∇+

ie

c
A⃗)2Ψ (436)

=
1

2m

∫
d3r|(∇+

ie

c
A⃗)Ψ|2, (437)

after an integration by parts in the second step. GL just replaced e, m with e∗, m∗ to obtain

the kinetic part of Eq. (435); they expected that e∗ and m∗ were the elementary electron

charge and mass, respectively, but did not assume so.

103In fact one could make a case that the BCS theory is the most quantitatively accurate theory in all of condensed matter

physics
104ψ in the He case has the microscopic interpretation as the Bose condensate amplitude.
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Figure 39: Mexican hat potential for superconductor.

A system described by this free energy will undergo a second-order phase transition in

zero field when a = 0: clearly when a is positive, the system can minimize δf by having

ψ = 0 (no superconductivity), whereas if a is negative, δf has a minimum with ψ ̸= 0. The

free energy (435) is a functional of the order parameter ψ, meaning the actual value of the

order parameter realized in equilibrium satisfies δf/δψ = 0.105 Notice f is independent of the

phase ϕ of the order parameter, ψ ≡ |ψ|eiϕ, and so the ground state for a < 0 is equivalent

to any state ψ related to it by multiplication by a pure phase. This is the U(1) gauge

invariance of which we spoke earlier. This symmetry is broken when the system chooses one

of the ground states (phases) upon condensation (Fig 1.).

For a uniform system in zero field, the total free energy F =
∫
d3rf is minimized when f

is, so one finds for the order parameter at the minimum,

|ψ|eq = [−a
2b
]1/2, a < 0 (438)

|ψ|eq = 0, a > 0. (439)

When a changes sign, a minimum with a nonzero value becomes possible. For a second order

transition as one lowers the temperature, we assume that a and b are smooth functions of T

near Tc. Since we are only interested in the region near Tc, we take only the leading terms
105Thus you should not be perturbed by the fact that f apparently depends on ψ even for a > 0. The value of f in equilibrium

will be fn = f [ψ = 0].
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in the Taylor series expansions in this region: a(T,H) = a0(T − Tc) and b = constant. Eqs.

(438) and (439) take the form:

|ψ(T )|eq = [a0(Tc−T )
2b

]1/2, T < Tc (440)

|ψ(T )|eq = 0, T > Tc. (441)

Substituting back into Eqs.435, we find:

fs(T )− fn(T ) = −a20
4b
(Tc − T )2, T < Tc (442)

fs(T )− fn(T ) = 0, T > Tc. (443)

The idea now is to calculate various observables, and determine the GL coefficients for

a given system. Once they are determined, the theory acquires predictive power due to its

extreme simplicity. It should be noted that GL theory is applied to many systems, but it is

in classic superconductors that it is most accurate, since the critical region, where deviations

from mean field theory are large, is of order 10−4 or less. Near the transition it may be taken

to be exact for all practical purposes. This is not the case for the HTSC, where the size of

the critical region has been claimed to be as much as 10-20K in some samples.

Supercurrents. Let’s now focus our attention on the term in the GL free energy which

leads to supercurrents, the kinetic energy part:

Fkin =

∫
d3r

1

2m∗ |(∇+
ie∗

c
A⃗)ψ|2 (444)

=

∫
d3r

1

2m∗ [(∇|ψ|)2 + (∇ϕ− e∗/cA)2|ψ|2]. (445)

These expressions deserve several remarks. First, note that the free energy is gauge invariant,

if we make the transformation A⃗→ A⃗+∇Λ, where Λ is any scalar function of position, while

at the same time changing ψ → ψ exp(−ie∗Λ/c) . Second, note that in the last step above I

have split the kinetic part of f into a term dependent on the gradients of the order parameter

magnitude |ψ| and on the gradients of the phase ϕ. Let us use a little intuition to guess

what these terms mean. The energy of the superconducting state below Tc is lower than

that of the normal state by an amount called the condensation energy.106 From Eq. (435) in

zero field this is of order |ψ|2 very close to the transition. To make spatial variations of the

magnitude of ψ must cost a significant fraction of the condensation energy in the region of

space in which it occurs.107 On the other hand, the zero-field free energy is actually invariant

with respect to changes in ϕ, so fluctuations of ϕ alone actually cost no energy.
106We will see below from the Gorkov derivation of GL from BCS that it is of order N(0)∆2.
107We can make an analogy with a ferromagnet, where if we have a domain wall the magnetization must go to zero at the

domain boundary, costing lots of surface energy.
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With this in mind, let’s ask what will happen if we apply a weak magnetic field described

by A to the system. Since it is a small perturbation, we don’t expect it to couple to |ψ| but

rather to the phase ϕ. The kinetic energy density should then reduce to the second term

in Eq. (445), and furthermore we expect that it should reduce to the intuitive two-fluid

expression for the kinetic energy due to supercurrents, 1
2
mnsv

2
s . Recall from the superfluid

He analogy, we expect |ψ|2 ≡ n∗
s to be a kind of density of superconducting electrons, but

that we aren’t certain of the charge or mass of the “particles". So let’s put

fkin ≃
1

2m∗ |(∇+
ie∗

c
A⃗)ψ|2. =

∫
d3r

1

2m∗ (∇ϕ+ e∗/cA)2|ψ|2 ≡ 1

2
m∗n∗sv

2
s .

(446)
Comparing the forms, we find that the superfluid velocity must be

v⃗s =
1

m∗ (∇ϕ+
e∗

c
A⃗). (447)

Thus the gradient of the phase is related to the superfluid velocity, but the vector potential

also appears to keep the entire formalism gauge-invariant.

Meissner effect. The Meissner effect now follows immediately from the two-fluid iden-

tifications we have made. The supercurrent density will certainly be just

j⃗s = −e∗n∗
sv⃗s = −e

∗n∗
s

m∗ (∇ϕ+
e∗

c
A⃗). (448)

Taking the curl of this equation, the phase drops out, and we find the magnetic field:

∇× j⃗s = −e
∗2n∗

s

m∗c
B⃗. (449)

Now recall the Maxwell equation

j⃗s =
c

4π
∇× B⃗, (450)

which, when combined with (14), gives

c

4π
∇×∇× B⃗ = − c

4π
∇2B⃗ = −e

∗2ns
m∗c

B⃗, (451)

or

λ2∇2B⃗ = B⃗, (452)

where

λ =
m∗c2

4πe∗2n∗
s

1/2

. (453)

Notice now that if we use what we know about Cooper pairs, this expression reduces to the

BCS/London penetration depth. We assume e∗ is the charge of the pair, namely e∗ = 2e,

and similarly m∗ = 2m, and |ψ|2 = n∗
s = ns/2 since n∗

s is the density of pairs.
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Flux quantization. If we look at the flux quantization described in Part 1 of these

notes, it is clear from our subsequent discussion of the Meissner effect, that the currents

which lead to flux quantization will only flow in a small part of the cross section, a layer of

thickness λ. This layer encloses the flux passing through the toroid. Draw a contour C in

the interior of the toroid, as shown in Figure 40. Then vs = 0 everywhere on C. It follows

j
s

C

λ
Φ

Figure 40: Quantization of flux in a toroid.

that

0 =

∮
C

dℓ⃗ · v⃗s =
1

m∗

∮
C

dℓ⃗ · (∇ϕ+
e∗

c
A⃗). (454)

The last integral may be evaluated using∮
C

dℓ⃗ · ∇ϕ = 2π × integer, (455)

which follows from the requirement that ψ be single-valued as in quantum mechanics. Having

n ̸= 0 requires that one not be able to shrink the contour to a point, i.e. that the sample

has a hole as in our superconducting ring. The line integral of the vector potential is

e∗

c

∮
C

dℓ⃗ · A⃗ =
e∗

c

∫
S

dS⃗ · ∇ × A⃗ (456)

=
e∗

c

∫
S

dS⃗ · B⃗ (457)

=
e∗

c
Φ. (458)

Here S is a surface spanning the hole and Φ the flux through the hole. Combining these

results,

Φ = 2π
ℏc
2e
n = n

hc

2e
= nΦ0, (459)

where n is a integer, Φ0 is the flux quantum, and I’ve reinserted the correct factor of ℏ in

the first step to make the units right. Flux quantization indeed follows from the fact that
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the current is the result of a phase gradient.108

Derivation from Microscopic Theory. One of the reasons the GL theory did not

enjoy much success at first was the fact that it is purely phenomenological, in the sense that

the parameters a0, b,m∗ are not given within any microscopic framework. The BCS theory is

such a framework, and gives values for these coefficients which set the scale for all quantities

calculable from the GL free energy. The GL theory is more general, however, since, e.g.

for strong coupling superconductors the weak coupling values of the coefficients are simply

replaced by different ones of the same order of magnitude, without changing the form of the

GL free energy. In consequence, the dependence of observables on temperature, field, etc,

will obey the same universal forms.

The GL theory was derived from BCS by Gor’kov. The calculation is beyond the scope

of this course, but can be found in many texts.

5.9 Type I and Type II superconductivity

Now let’s look at the problem of the instability of the normal state to superconductivity

in finite magnetic field H. At what magnetic field do we expect superconductivity to be

destroyed, for a given T < Tc?109 Well, overall energy is conserved, so the total condensation

energy of the system in zero field,fs−fn(T ) of the system must be equal to the magnetic field

energy
∫
d3rH2/8π the system would have contained at the critical field Hc in the absence

of the Meissner effect. For a completely homogeneous system I then have

fs(T )− fn(T ) = −H2
c /8π, (460)

and from Eq. (8) this means that, near Tc,

Hc =

√
2πa20
b

(Tc − T ). (461)

Whether this thermodynamic critical field Hc actually represents the applied field at which

flux penetrates the sample depends on geometry. We assumed in the simplified treatment

above that the field at the sample surface was the same as the applied field. Clearly for

any realistic sample placed in a field, the lines of field will have to follow the contour of the

sample if it excludes the field from its interior. This means the value of H at different points

on the surface will be different: the homogeneity assumption we made will not quite hold.

If we imagine ramping up the applied field from zero, there will inevitably come a point

Happl = Happl,c where the field at certain points on the sample surface exceeds the critical
108It is important to note, however, that a phase gradient doesn’t guarantee that a current is flowing. For example, in the

interior of the system depicted in Fig. 2, both ∇ϕ and A⃗ are nonzero in the most convenient gauge, and cancel each other!
109Clearly it will destroy superconductivity since it breaks the degenerace of between the two componenets of a Cooper pair.
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field, but at other points does not. For applied fields Happl,c < Happl < Hc, part of the sample

will then be normal, with local field penetration, and other parts will still exclude field and

be superconducting. This is the intermediate state of a type I superconductor. The structure

of this state for a real sample is typically a complicated "striped" pattern of superconducting

and normal phases. Even for small fields, edges and corners of samples typically go normal

because the field lines bunch up there; these are called "demagnetizing effects", and must

be accounted for in a quantitatively accurate measurement of, say, the penetration depth.

It is important to note that these patterns are completely geometry dependent, and have no

intrinsic length scale associated with them.

In the 50’s, there were several materials known, however, in which the flux in sufficiently

large fields penetrated the sample in a manner which did not appear to be geometry depen-

dent. For example, samples of these so-called "type II" superconductors with nearly zero

demagnetizing factors (long thin plates placed parallel to the field) also showed flux pene-

tration in the superconducting state. The type-II materials exhibit a second-order transition

at finite field and the flux B through the sample varies continuously in the superconducting

state. Therefore the mixed state must have currents flowing, and yet the Meissner effect is

not realized, so that the London equation somehow does not hold.

The answer was provided by Abrikosov in 1957 [A.A.A., Sov. Phys. JETP 5, 1174 (1957).]

in a paper which Landau apparently held up for several years because he did not believe it.

Let us neglect the effects of geometry again, and go back to our theorist’s sample with zero

demagnetizing factor. Can we relax any of the assumptions that led to the London equation

(448)? Only one is potentially problematic, that n∗
s(r) = |ψ(r)|2 = constant independent of

position. Let’s examine–as Abrikosov did–the energy cost of making spatial variations of the

order parameter. The free energy in zero field is

F =

∫
d3r[a|ψ|2 + 1

2m∗ |∇ψ|
2 + b|ψ|4], (462)

or
1

−a
F =

∫
d3r[−|ψ|2 + ξ2|∇ψ|2 + b

−a
|ψ|4], (463)

where I’ve put

ξ = [
1

−2m∗a
]1/2 = [

1

−2m∗a0(Tc − T )
]1/2. (464)

Clearly the length ξ represents some kind of stiffness of the quantitiy |ψ|2, the superfluid

density. [Check that it does indeed have dimensions of length!] If ξ, the so-called coherence

length, is small, the energy cost of ns varying from place to place will be small. If the

order parameter is somehow changed from its homogeneous equilibrium value at one point

in space by an external force, ξ specifies the length scale over which it "heals". We can
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then investigate the possibility that, as the kinetic energy of superfluid flow increases with

increasing field, if ξ is small enough it might eventually become favorable to "bend" |ψ|2

instead. In typical type I materials, ξ(T = 0) is of order several hundreds or even thousands

of Angstrom, but in heavy fermion superconductors, for example, coherence lengths are of

order 50-100A. The smallest coherence lengths are attained in the HTSC, where ξab is of

order 12-15A, whereas ξc is only 2-3A.

The general problem of minimizing F when ψ depends on position is extremely difficult.

However, we are mainly interested in the phase boundary where ψ is small, so life is a bit

simpler. Let’s recall our quantum mechanics analogy once more so as to write F in the form:

F =

∫
d3r[a|ψ|2 + b|ψ|4]+ < ψ|Ĥkin|ψ >, (465)

where Ĥkin is the operator

− 1

2m∗ (∇+
ie∗

c
A⃗)2. (466)

Now note 1) sufficiently close to the transition, we may always neglect the 4th-order term,

which is much smaller; 2) to minimize F , it suffices to minimize < Ĥkin >, since the |ψ|2 term

will simply fix the overall normalization. The variational principle of quantum mechanics

states that the minimum value of < H > over all possible ψ is achieved when ψ is the ground

state (for a given normalization of ψ). So we need only solve the eigenvalue problem

Ĥkinψj = Ejψj (467)

for the lowest eigenvalue, Ej, and corresponding eigenfunction ψj. For the given form of

Ĥkin, this reduces to the classic quantum mechanics problem of a charged particle moving

in an applied magnetic field. The applied field H is essentially the same as the microscopic

field B since ψ is so small (at the phase boundary only!). I’ll remind you of the solution,

due to to Landau, in order to fix notation. We choose a convenient gauge,

A = −Hyx̂, (468)

in which Eq. 467 becomes

1

2m∗ [(−i
∂

∂x
+

y

ℓ2M
)2 − ∂2

∂y2
− ∂2

∂z2
]ψj = Ejψj, (469)

where ℓM = (c/e∗H)1/2 is the magnetic length. Since the coordinates x and z don’t appear

explicitly, we make the ansatz of a plane wave along those directions:

ψ = η(y)eikxx+ikzz, (470)

yielding
1

2m∗ [(kx +
y

ℓ2M
)2 − ∂2

∂y2
+ k2z ]η(y) = Eη(y). (471)
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But this you will recognize as just the equation for a one-dimensional harmonic oscillator

centered at the point y = −kxℓ2M with an additional additive constant k2z/2m∗ in the energy.

Recall the standard harmonic oscillator equation

(− 1

2m

∂2

∂x2
+

1

2
kx2)Ψ = EΨ, (472)

with ground state energy

E0 =
ω0

2
=

1

2
(k/m)1/2, (473)

where k is the spring constant, and ground state wavefunction corresponding to the lowest

order Hermite polynomial,

Ψ0 ≈ exp[−(mk/4)1/2x2]. (474)

Let’s just take over these results, identifying

Ĥkinψkx,kz =
e∗H

2m∗c
ψkx,kz . (475)

The ground state eigenfunction may then be chosen as

ψkx,kz = ψ0(
πℓ2M
L2
y

)−1/4eikxx+ikzz exp[−(y + kxℓ
2
M)2/2ℓ2M)], (476)

where Ly is the size of the sample in the y direction (LxLyLz = V = 1). The wave functions

are normalized such that ∫
d3r|ψkx,kz |2 = ψ2

0 (477)

(since I set the volume of the system to 1). The prefactors are chosen such that ψ2
0 represents

the average superfluid denstity. One important aspect of the particle in a field problem seen

from the above solution is the large degeneracy of the ground state: the energy is independent

of the variable kx, for example, corresponding to many possible orbit centers.

We have now found the wavefunction which minimizes < Ĥkin >. Substituting back into

(465), we find using (475)

F = [a0(T − Tc) +
e∗H

2m∗c
]

∫
d3r|ψ|2 + b

∫
d3r|ψ|4. (478)

When the coefficient of the quadratic term changes sign, we have a transition. The field at

which this occurs is called the upper critical field Hc2,

Hc2(T ) =
2m∗ca0
e∗

(Tc − T ). (479)

What is the criterion which distinguishes type-I and type II materials? Start in the normal

state for T < Tc as shown in Figure 3, and reduce the field. Eventually one crosses either Hc

or Hc2 first. Whichever is crossed first determines the nature of the instability in finite field,

i.e. whether the sample expels all the field, or allows flux (vortex) penetration (see section

C).
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Figure 41: Phase boundaries for classic type II superconductor.

In the figure, I have displayed the situation where Hc2 is higher, meaning it is encountered

first. The criterion for the dividing line between type 1 and type II is simply

|dHc

dT
| = |dHc2

dT
| (480)

at Tc, or, using the results (461) and (479),

(m∗)2c2b

π(e∗)2
=

1

2
. (481)

This criterion is a bit difficult to extract information from in its current form. Let’s define

the GL parameter κ to be the ratio of the two fundamental lengths we have identified so far,

the penetration depth and the coherence length:

κ =
λ

ξ
. (482)

Recalling that

λ2 = − m∗c2

4πe∗2n∗
s

= − m∗c2b

2πe∗2a
(483)

and

ξ2 = − 1

2m∗a
. (484)

The criterion (58) now becomes

κ2 =
m∗c2b/2πe∗2a

1/2m∗a
=

(m∗)2c2b

πe∗2
=

1

2
. (485)

Therefore a material is type I (II) if κ is less than (greater than) 1√
2
. In type-I superconduc-

tors, the coherence length is large compared to the penetration depth, and the system is stiff

with respect to changes in the superfluid density. This gives rise to the Meissner effect, where
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ns is nearly constant over the screened part of the sample. Type-II systems can’t screen out

the field close to Hc2 since their stiffness is too small. The screening is incomplete, and the

system must decide what pattern of spatial variation and flux penetration is most favorable

from an energetic point of view. The result is the vortex lattice first described by Abrikosov.

5.10 Vortex Lattice

I commented above on the huge degeneracy of the wave functions (476). In particular, for

fixed kz = 0, there are as many ground states as allowed values of the parameter kx. At Hc2

it didn’t matter, since we could use the eigenvalue alone to determine the phase boundary.

Below Hc2 the fourth order term becomes important, and the minimization of f is no longer

an eigenvalue problem. Let’s make the plausible assumption that if some spatially varying

order parameter structure is going to form below Hc2, it will be periodic with period 2π/q,

i.e. the system selects some wave vector q for energetic reasons. The x-dependence of the

wave functions

ψkx,kz=0 = ψ0(
πℓ2M
L2
y

)−1/4eikxx exp[−(y + kxℓ
2
M)2/2ℓ2M)]. (486)

is given through plane wave phases, eikxx. If we choose kx = qnx, with nx =integer, all such

functions will be invariant under x→ x+2π/q. Not all nx’s are allowed, however: the center

of the "orbit", kxℓ2M should be inside the sample:

−Ly/2 < kxℓ
2
M = qℓ2Mnx < Ly/2, (487)

Thus nx is restricted such that

− Ly
2qℓ2

= −nmax/2 < nx < nmax/2 =
Ly
2qℓ2

(488)

and the total number of degenerate functions is Ly/(qℓ2M).

Clearly we need to build up a periodic spatially varying structure out of wave functions

of this type, with "centers" distributed somehow. What is the criterion which determines

this structure? All the wave functions (486) minimize < Ĥkin >, and are normalized to∫
d3r|ψ|2 = |ψ0|2. They are all therefore degenerate at the level of the quadratic GL free

energy, F =
∫
d3r|ψ|2+ < Ĥkin >. The fourth order term must stabilize some linear combi-

nation of them. We therefore write

ψ(r) =
∑
nx

Cnxψnx(r), (489)

with the normalization
∑

nx
|Cnx|2 = 1, which enforces

∫
d3r|ψ(r)|2 = ψ2

0. Note this must

minimize < Ĥkin >. Let’s therefore choose the Cnx and q to minimize the remaining terms in
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F ,
∫
d3r[a|ψ|2+b|ψ|4]. Substituting and using the normalization condition and orthogonality

of the different ψkz ,kx , we find

f = ãψ2
0 + b̃ψ4

0. (490)

with

ã(H,T ) = a0(T − Tc) +
e∗H

2m∗c
=

e∗

2m∗c
(H −Hc2(T )), (491)

b̃(H) = sb, (492)

and

s = (
πℓ2M
L2
y

)−1
nmax∑

nx1,nx2,nx3,nx4

C∗
nx1
C∗

nx2
Cnx3

Cnx4∫
dz

∫
dx eiq(−nx1−nx2+nx3+nx4)x ×∫

dy e
{− 1

2ℓ2
M

[(y+qnx1ℓ
2
M )2+(y+qnx2ℓ

2
M )2+(y+qnx3ℓ

2
M )2+(y+qnx4ℓ

2
M )2]}

. (493)

The form of f [ψ0] is now the same as in zero field, so we immediately find that in equilibrium,

ψ0|eq = (
−ã
2b̃

)1/2. (494)

and

f =
−ã2

4b̃
. (495)

This expression depends on the variational parameters Cnx , q only through the quantity s

appearing in b̃. Thus if we minimize s, we will minimize f (remember b > 0, so f < 0). The

minimization of the complicated expression (493) with constraint
∑

nx
|Cnx|2 = 1 is difficult

enough that A. Abrikosov made a mistake the first time he did it, and I won’t inflict the

full solution on you. To get an idea what it might look like, however, let’s look at a very

symmetric linear combination, one where all the Cnx ’s are equal:

Cn = n−1/2
max . (496)

Then

ψ(r) ∼
∑
n

einqx exp[−(y + nqℓ2M)2/2ℓ2M ], (497)

which is periodic in x with period 2π/q,

ψ(x+ 2π/q, y) = ψ(x, y), (498)

and periodic in y with period qℓ2M , up to a phase factor

ψ(x, y + qℓ2M) = e−iqxψ(x, y). (499)
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in a sufficiently large system. Note if q =
√
2π/ℓM , |ψ|2 forms a square lattice! The area of

a unit cell is (2π/q)× (qℓ2M) = 2πℓ2M , and the flux through each one is therefore

Φcell = 2πℓ2MH = 2π
c

e∗H
H =

hc

2e
= Φ0 (500)

where I inserted a factor of ℏ in the last step. We haven’t performed the minimization

explicitly, but this is a characteristic of the solution, that each cell contains just one flux

quantum. The picture is crudely depicted in Fig. 42a). Note by symmetry that the currents

s=1.18 s=1.16

Figure 42: a) Square vortex lattice; b) triangular vortex lattice.

must cancel on the boundaries of the cells. Since j⃗s = −ensv⃗s, integrating ∇ϕ + 2e
ℏcA⃗ = 0

around each square must give, as in our previous discussion of flux quantization in a toroid,

Φcell = nΦ0, n = integer. (501)

Somehow the vortex lattice consists of many such rings. The problem with this idea is that

the only way
∮
∇ϕ · dℓ⃗ = δϕ around the boundary can be nonzero and the usual argument

about single-valuedness of the wave function carried through is if there is a “hole" in the

wave function. If there is no hole, or region from which the wave function is excluded, the

path can be shrunk to a point, but the value of the integral must remain the same since the

integrand is the gradient of a scalar field. This is unphysical because it would imply a finite

phase change along an infinitesimal path (and a divergence of the kinetic energy!) The only

way out of the paradox is to have the system introduce its own “hole" in itself, i.e. have the

amplitude of the order parameter density |ψ|2 go to zero at the center of each cell. Intuitively,

the magnetic field will have an accompanying maximum here, since the screening tendency

will be minimized. This reduction in order parameter amplitude, magnetic flux bundle, and

winding of the phase once by 2π constitute a magnetic “vortex", which I’ll discuss in more

detail next time.

Assuming Cn = constant, which leads to the square lattice does give a relatively good

(small) value for the dimensionless quantity s, which turns out to be 1.18. This was
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Abrikosov’s claim for the absolute minimum of f [|ψ|2]. But his paper contained a (now

famous) numerical error, and it turns out that the actual minimum s = 1.16 is attained for

another set of the Cn’s, to wit

Cn = n
−1/2
max , n = even (502)

Cn = in
−1/2
max , n = odd. (503)

This turns out to be a triangular lattice (Fig. 42b), for which the optimal value of q is found

to be

q =
31/4π1/2

ℓM
, (504)

Again the area of the unit cell is 2πℓ2M , and there is one flux quantum per unit cell.

5.11 Properties of Single Vortex. Lower critical field Hc1

Given that the flux per unit cell is quantized, it is very easy to see that the lattice spacing

d is actually of order the coherence length near Hc2. Using (479) and (464) we have

Hc2 =
c

e∗
1

ξ2
=

Φ0

2πξ2
. (505)

On the other hand, as H is reduced, d must increase. To see this, note that the area of the

triangular lattice unit cell is A =
√
3d2/2, and that there is one quantum of flux per cell,

A = Φ0/H. Then the lattice constant may be expressed as

d =
4π√
3
ξ(
Hc2

H
)1/2. (506)

Since λ≫ ξ is the length scale on which supercurrents and magnetic fields vary, we expect the

size of a magnetic vortex to be about λ. This means at Hc2 vortices are strongly overlapping,

but as the field is lowered, the vortices separate, according to (500), and may eventually be

shown to influence each other only weakly. To find the structure of an isolated vortex is a

straightforward but tedious exercise in minimizing the GL free energy, and in fact can only

be done numerically in full detail. But let’s exploit the fact that we are interested primarily

in strongly type-II systems, and therefore go back to the London equation we solved to find

the penetration depth in the half-space geometry for weak fields, allow ns to vary spatially,

and look for vortex-like solutions. For example, equation (451) may be written

−λ2∇×∇× B⃗ = B⃗. (507)

Let’s integrate this equation over a surface perpendicular to the field B⃗ = B⃗(x, y)ẑ spanning

one cell of the vortex lattice:

−λ2
∫

∇× (∇× B⃗) · dS⃗ =

∫
B⃗ · dS⃗, (508)

−λ24π
c

∮
j⃗s · dℓ⃗ = Φ0. (509)
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But we have already argued that j⃗s · dℓ⃗ should be zero on the boundary of a cell, so the left

side is zero and there is a contradiction. What is wrong? The equation came from assuming a

two-fluid hydrodynamics for the superconductor, with a nonzero ns everywhere. We derived

it, in fact, from BCS theory, but only for the case where ns was constant. Clearly there must

be another term in the equation when a vortex-type solution is present, one which can only

contribute over the region where the superfluid density is strongly varying in space, i.e. the

coherence length-sized region in the middle of the vortex where the order parameter goes to

zero (vortex “core"). Let’s simply add a term which enables us to get the right amount of

flux to Eq. (507). In general we should probably assume something like

λ2∇×∇× B⃗ + B⃗ = Φ0g(r⃗)ẑ (510)

where g(r) is some function which is only nonzero in the core. The flux will then come

out right if we demand
∫
d3rg(r⃗) = 1. But let’s simplify things even further, by using the

fact that ξ ≪ λ: let’s treat the core as having negligible size, which means it is just a line

singularity. We therefore put g(r⃗) = δ(r⃗). Then the modified London equation with line

singularity acting as an inhomogeneous “source term" reads

−λ2∇2B⃗ + B⃗ = Φ0δ
2(r⃗)ẑ (511)

−λ2 1
ρ

∂

∂ρ
(ρ
∂Bz

∂ρ
) +Bz = Φ0δ

2(r⃗), (512)

where ρ is the radial cylindrical coordinate. Equation (91) has the form of a modified Bessel’s

equation with solution:

Bz =
Φ0

2πλ2
K0(

ρ

λ
). (513)

The other components of B⃗ vanish. If you go to Abramowitz & Stegun you can look up the

asymptotic limits:

Bz =
Φ0

2πλ2
[log(

λ

ρ
) + 0.116], ξ < ρ≪ λ (514)

Bz =
Φ0

2πλ2

√
πλ

2ρ
e−ρ/λ, ρ≫ λ. (515)

Note the form (93) is actually the correct asymptotic solution to (91) all the way down to

ρ = 0, but the fact that the solution diverges logarithmically merely reflects the fact that we

didn’t minimize the free energy properly, and allow the order parameter to relax as it liked

within the core. So the domain of validity of the solution is only down to roughly the core

size, ρ ≃ ξ, as stated. In Figure 43 I show schematically the structure of the magnetic and

order parameter profiles in an isolated vortex. The solution may now be inserted into the

free energy and the spatial integrals performed, with some interesting results:

F = Lz
Φ2

0

16π2λ2
log(κ). (516)
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Figure 43: Isolated vortex

It is easy to get an intuitive feel for what this means, since if we assume the field is uniform

and just ask what is the magnetic energy, we get roughly

Fv =
1

8π
× vortex volume×B2 (517)

≃ 1

8π
× (πλ2Lz)× (Φ0/πλ

2)2 (518)

= Lz
Φ2

0

8π2λ2
, (519)

the same result up to a slowly varying factor. Now the lower critical field Hc1 is determined

by requiring the Gibbs free energies of the Meissner phase with no vortex be equal to the

Gibbs free energy of the phase with a vortex.110 G differs from F through a term −
∫
BH/4π.

In the Meissner state G = F , so we may put

F = F + ElineLz −
1

4π
Hc1

∫
Bd3r (520)

= F + ElineLz −
1

4π
Φ0Lz, (521)

where Eline is the free energy per unit length of the vortex itself. Therefore

Hc1 =
4πEline
Φ0

(522)

is the upper critical field. But the line energy is given precisely by Eq. (95), Eline =
Φ2

0

16π2λ2
log(κ), so

Hc1(T ) =
Φ0

4πλ2
log(κ). (523)

110We haven’t talked about the Gibbs vs. Helmholtz free energy, but recall the Gibbs is the appropriate potential to use when

the external field H is held fixed, which is the situation we always have, with a generator supplying work to maintain H.
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5.12 Josephson Effect

In 1962 Brian Josephson111, then a 22–year old graduate student, made a remarkable pre-

diction that two superconductors separated by a thin insulating barrier should give rise to a

spontaneous (zero voltage) DC current, Is = Ic sin∆ϕ, where ∆ϕ is the difference in phase

across the junction. And that if a finite (DC) voltage were applied, an AC current with

frequency ω = 2eV/ℏ would flow. Ic is called the Josephson critical current.

There is a myth that Brian Josephson did his calculation (1962) and won the Nobel prize

(1973) as part of the solution to a homework problem of Phil Anderson’s. The truth is

that Anderson was a lecturer on sabbatical at Cambridge in 1961-62, and he gave a series of

lectures in which he mentioned the problem of tunneling between two superconductors, which

Josephson then promptly solved. The idea was opposed at first by John Bardeen, who felt

that pairing could not exist in the barrier region112. Thus much of the early debate centered

on the nature of the tunneling process, whereas in fact today we know that the Josephson

effect occurs in a variety of situations whenever two superconductors are separated by a “weak

link", which can be an insulating region, normal metal, or short, narrow constriction.113

Let’s first consider the last example as the conceptually simplest. The Ginzburg–Landau

equation appropriate for this situation may be written

ξ2
d2f

dx2
+ f − f 3 = 0 (524)

where ξ =
√

ℏ
2m∗a(T )

is the GL coherence length and f(x) ≡ Ψ(x)/Ψ∞. Take L ≪ ξ, so the

deviations of Ψ coming from the bulk value Ψ1 of the first SC is small, and vice versa for

the second SC. Changes of Ψ in the constriction occur over a length scale of L, so that the

first term is of O((ξ/L)2) ≫ f − f 3. So we must solve a Laplace equation for f , (d
2f
dx2

= 0)
111Phys. Lett. 1, 251 (1962)
112Physics Today, July 2001
113In Je. 2009 I received an email from Brian Josephson correcting this version of the history:

Date: Wed, 10 Jun 2009 09:43:54 +0100

From: Brian Josephson <bdj10@cam.ac.uk>

To: pjh@phys.ufl.edu

Subject: the Josephson myth

Dear Peter,

While browsing I came across your mention of the ’myth’ that I discovered the effect because of a problem

set by Anderson. Your correction is not completely correct either! It was Pippard, my supervisor, who

drew my attention to Giaevar’s tunnelling expts. and his theory, which started me thinking (especially

as to how one could get away without using coherence factors). Anderson on the other hand told me of the

Cohen/Falicov/Phillps calculation involving a single superconductor when it came our in PRL, which gave me the

idea of how to do the two-sc. case. Previously I had got the broken symmetry idea which was crucial from a

number of papers including Anderson’s pseudospin model, and also expounded in his lecture course which I went

to.

Best regards, Brian J.
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with B.C. f(0) = 1, f(L) = ei∆Φ. The solution will be

f =

(
1− x

L

)
+
x

L
ei∆ϕ. (525)

The solution can be thought of as two terms, the first Ψ1, beginning to “leak" into the

constriction from the left, the second Ψ2 leaking into the constriction from the right. The

GL expression for the current will be

j =
e∗ℏ
2m∗i

(
Ψ∗∇Ψ−Ψ∇Ψ∗)− e∗2

m∗c
Ψ∗ΨA︸ ︷︷ ︸
zero

=
e∗ℏ
2m∗i

Ψ2
∞

[(
1− x

L
+
x

L
e−i∆ϕ

)(
− 1

L
+

1

L
ei∆ϕ

)
− c.c

]
=
e∗ℏΨ2

∞
m∗L

sin∆ϕ, (526)

which means that the current will be

I = Ic sin∆ϕ, (527)

Ic =
e∗ℏΨ2

∞
m∗L

A, (528)

where A is the cross–section.

Given that we have two weakly coupled QM systems, it is “not unreasonable" (justified

by microscopic theory) to write down coupled Schrödinger equations

i
∂Ψ1

∂t
= E1Ψ1 + αΨ2 (529)

i
∂Ψ2

∂t
= E2Ψ2 + αΨ1 (530)

where H(i)
0 Ψi = EiΨi and E1 = E2 = E0 if the superconductors are identical. Take |Ψi|2 to

be the density of pairs in SCi

Ψi =
√
nie

iϕi ⇒ Ψ̇i =
1

2
√
ni
ṅie

iϕi + i
√
niϕ̇ie

iϕi ⇒

ṅ1

2
√
n1

+ i
√
n1ϕ̇1 = −iE1

√
n1 − iα

√
n2e

i(ϕ2−ϕ1) (531)

ṅ2

2
√
n2

+ i
√
n2ϕ̇2 = −iE2

√
n2 − iα

√
n1e

i(ϕ1−ϕ2). (532)

If we take the real parts and use ṅ1 = −ṅ2 we get

ṅ1

2
√
n1

= α
√
n2 sin(ϕ2 − ϕ1)

− ṅ1

2
√
n2

= α
√
n1 sin(ϕ1 − ϕ2) ⇒

ṅ1 = 2α
√
n1n2 sin(ϕ2 − ϕ1), (533)

Note I’ve put V=A=1. Then the current is just j = 2eṅ1. If we take the imaginary parts
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we have

√
n1ϕ̇1 = −E1

√
n1 − α

√
n2 cos(ϕ2 − ϕ1) (534)

√
n2ϕ̇2 = −E2

√
n2 − α

√
n1 cos(ϕ1 − ϕ2), (535)

and by subtracting and assuming n1 ≃ n2 (let’s couple 2 identical superconductors at first)

we get

ϕ̇1 − ϕ̇2 = E2 − E1 = 2e(V1 − V2) (536)

where for the second equality we used the fact that the potential difference between the

superconductors shifts the pair energies by −2eV . So we see that a finite voltage difference

leads to a time changing phase difference ∆ϕ which means an AC current via Eq. (533).

Magnetic fields. Now put a flux through the junction where the B field is along the −ŷ

direction and A = −Bxẑ. The phase of the wave function Ψ must change by

ϕ→ ϕ− 2e

c

∫
dS ·A (537)

for the theory to be gauge invariant. Notice that ϕ is now space–dependent. So the Josephson

equations will read

j = 4eα
√
n1n2︸ ︷︷ ︸

jc

sin

(
∆ϕ− 2e

c

∫ 2

1

dS ·A
)
, (538)

2e(V1 − V2) =
∂

∂t

(
ϕ2 − ϕ1 −

2e

c

∫ 2

1

dS ·A
)
, (539)

and since ∫ 2

1

S ·A =

∫ d

0

dz(−Bx) = −Bxd, (540)

we will have

J =

∫ L

0

dxj(x) =

∫ L

0

dxjc sin

(
∆Φ− 2e

c
Bxd

)
=

Ljc
2πΦ/Φ0

[
cos∆Φ− cos

(
∆ϕ+

2πΦ

Φ0

)]
, (541)

where Φ0 =
2πc
2e

. What is the maximum current through the junction for all possible ∆ϕ?

We have to calculate dJ
d∆Φ

= 0 which leads to the relation

tan∆Φ = cot
(
πΦ/Φ0

)
(542)

and with a bit of tedious trigonometry to

Jc = Ljc

∣∣∣∣sin
(
πΦ/Φ0

)
πΦ/Φ0

∣∣∣∣. (543)

This formula produces the Josephson–Fraunhofer interference pattern. DC SQUID (Super-

conducting Quantum Interference Device)
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We ignore resistance and capacitance for now. The inside SC thickness is assumed much

greater than λ and since vs = 0 we have ∇ϕ = 2A/Φ0. The flux will be

Φ =

∮
ds ·A =

∫ 2

1

ds · A+
Φ0

2

∫ 3

2

ds · ∇ϕ+

∫ 4

3

ds ·A+
Φ0

2

∫ 1

4

ds · ∇ϕ

=
Φ0

2
(ϕ3 − ϕ2) +

Φ0

2
(ϕ1 − ϕ4) +

∫ 2

1

ds ·A+

∫ 4

3

ds ·A

=
Φ0

2
(ϕ1 − ϕ2) +

∫ 2

1

ds ·A︸ ︷︷ ︸
≡−γ12

+
Φ0

2
(ϕ3 − ϕ4) +

∫ 4

3

ds ·A︸ ︷︷ ︸
≡−γ34

Φ = γ43 − γ12. (544)

The Josephson current through the SQUID will be

J = Jc
(
sin γ12 + sin γ43

)
= Jc

(
sin γ12 + sin(γ12 + Φ)

)
. (545)

Which means that the current oscillates with the flux. And as a result of that the SQUID

can be a sensitive measure of magnetic fields. In practice we include the capacitance and

resistance of the device.

6 Topological States of Matter

6.1 Introduction

The last 15 years have seen an explosion of interest in a variety of condensed matter models

and materials that are studied under the framework of “topological matter”. In reality many

of the concepts underlying this field go back much further, to William Shockley, who identified

in the 1950s band inversions and edge states in semiconductors that we would now call topo-

logical insulators, to the study of quantized vortices and vortex lattices in superconductors

and superfluid He in the 60’s, to the discovery and explanation of the Berezinskii-Kosterlitz-

Thouless transition in 2D films and Grisha Volovik’s ideas about the topological nature of

superfluid 3He in the 1970s, to the discovery and theory of the integer quantum Hall effect

in the early 1980s. It is fair to say, however, that it was a series of papers pointing out the

similarities of these phenomena, and proposals for how nontrivial topological states could

be realized in a variety of condensed matter systems, that created what was perceived as

a coherent field unified by a set of ideas. The new concept, as articulated by Kane, Mele,

Zhang, Fu and many others, was that a class of phase transitions involve ordered states

where no symmetry is spontaneously broken. Instead, the observable distinction between
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states is based on topology rather than symmetry. This description of the connection be-

tween disparate topological systems was recognized by the Nobel prize in 2016 to Kosterlitz,

Thouless, and Haldane114

6.2 Berry phase, connection, curvature and all that

Invariant integrals characterizing the order in topological phases can often be expressed in

terms of quantities identified by Michael Berry as essential to describe the global adiabatic

evolution of quantum states. In some sense the adiabatic effects in systems in the ther-

modynamic limit, limited to a particular topological sector because the energy barrier to

other topological states is too great, can be thought of by analogy to electronic motion in

molecules. The Born-Oppenheimer approach utilizes the high speeds of electrons compared

to nuclei to suggest that the motion of the nuclei can be treated adiabatically. This works

because the excitation energies of the electrons in the nuclear potential are very large and

well separated, such that the slow motion of the nuclei never causes transitions between

electronic states due to the exisitence of an energy gap.

Consider a Hamiltonian H115, that depends on time through a set of parameters R1(t),

R2(t)...RD(t). Note that D for now is just the number of independent parameters, and

need not have anything to do with the dimension of space. For every R⃗, we have a set of

orthonormal eigenvectors of H,

H(R⃗)|n(R⃗)⟩ = ϵn|n(R⃗)⟩. (546)

Assume the simplest situation, that H has a spectrum that is always discrete and has no

degeneracies. If we prepare the system initially in a particular t = 0 nth state |ψn(t = 0)⟩ ≡

|n(R(t = 0))⟩, the adiabatic theorem of ordinary quantum mechanics says that the system

remains in the nth state at a later time, but can acquire a phase:

|ψn(t)⟩ = Cn(t)|n(R⃗(t))⟩, (547)

where Cn is given by

Cn(t) = eiγn(t) exp

[
−i
∫ t

0

dt′ϵn(t
′)

]
. (548)

The 2nd factor reduces to eiϵn(t) if H is time independent, and is thus just the ordinary

evolution of an eigenfunction. The first factor is nontrivial and identical to the so-called
114Thouless shared 1/2 the prize, for contributions both to BKT transition and to edge states in quantum Hall effect. Haldane

received 1/3 of the prize, for showing that differences in the excitation spectra of quantum spin chains of integer or half-integer

spin were topological in nature. See https://www.nobelprize.org/prizes/physics/2016/advanced-information/.
115Presentation here follows that of Girvin and Yang, Modern Condensed Matter Physics.
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Berry phase if the path R⃗(t) taken in parameter space closes on itself. For now, plug our

result into the Schrödinger equation

i
∂

∂t
|ψn(t)⟩ = H[R⃗(t)]|ψn(t)⟩ (549)

and take the inner product with ⟨ψn(t)| to get

∂

∂t
γn(t) = i⟨n(R⃗(t))| ∂

∂t
|n(R⃗(t))⟩, (550)

so

γn(t) = i

∫ t

0

dt′⟨n(R⃗(t′))| ∂
∂t′

|n(R⃗(t′))⟩ (551)

=

∫
C

A⃗n(R⃗) · dR⃗, (552)

where

An(R⃗) = i⟨n(R⃗)| ∂
∂R⃗

|n(R⃗)⟩ (Berry connection), (553)

so we have replaced the time evolution by an integral over a path in parameter space C. In

this sense γn depends on geometry (in Hilbert space) rather than actual dynamics.

The geometric phase γn was ignored for many years for the same reason that the Aharonov-

Bohm phase (a precursive example of the Berry phase phenomenon) was ignored: it is gauge

dependent116, and it was assumed that all such phases accumulated in the wave function could

be gauged away. Berry showed in 1984117 that if one traverses a closed loop in parameter

space, γn was gauge independent and therefore observable (if non-zero),

γn =

∮
A⃗n(R⃗) · dR⃗ (Berry phase). (557)

The gauge transformation properties of the Berry connection A⃗n(R⃗) suggests an analogy

with the vector potential of electromagnetism, and immediately implies there should exist a

gauge independent 2nd rank tensor analogous to F µν . Define the “Berry curvature” as

ωnµν(R⃗) = ∂RµAν
n(R⃗)− ∂RνAµ

n(R⃗). (558)

Stokes’ theorem then gives

γn =

∫
∂S

A⃗n(R⃗) · dR⃗ =
1

2

∫
S

dRµ ∧ dRν ω
n
µν(R⃗). (559)

116If we multiply by a R⃗-dependent phase,

|n(R⃗)⟩ → eiϕ(R⃗)|n(R⃗)⟩ (554)

so A⃗n(R⃗) → A⃗n(R⃗)−
∂

∂R⃗
ϕ(R⃗) (555)

and γn → γn + ϕ(R⃗(t = 0))− ϕ(R⃗(t)), (556)

so in general γn is gauge dependent.
117M.V. Berry, Proc. Roy. Soc. London A392, 45 (1984).
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The integral on the left is taken around the boundary ∂S of a surface S, and the measure

dRµ ∧ dRν = −dRν ∧ dRµ is the oriented surface area element.

While all these concepts are familiar from E& M, it is important to remember that R⃗ is

not (necessarily) a position vector in a Cartesian space. IF the parameter space is 3D, we

can express the curvature as a magnetic field,

b⃗n ≡ ∇R⃗ × A⃗n = i⟨∇R⃗n(R⃗)| × |∇R⃗n(R⃗)⟩ (Berry field or curvature (3D only)), (560)

so

γn =

∫
S

b⃗n · dS⃗ (561)

is in this case a kind of “Berry flux”.

For example, in the case of the Aharonov-Bohm experiment with two electron beams

passing on opposite sides of a solenoid, the parameter R⃗0 may be taken as a position vector

taken on a path encircling the solenoid, in which case it may be shown that

γ =

∮
dR⃗0 · A⃗(R⃗0) = −2π

Φ

Φ0

, (562)

so the Berry flux is directly related to the physical magnetic flux118.

Before continuing, we note that although the Berry curvature is gauge invariant, it is

not explicitly so since it contains A. There is another form of ωnµν that is often used,

particularly in numerical calculations since the numerically generated eigenvector n(R⃗) is

gauge dependent and may have an R⃗-dependent phase factor that varies discontinuously

with R⃗. It is straightforward to show that

ωnµν = i
∑
n′ ̸=n

⟨n(R⃗)| ∂H
∂Rµ

|n′(R⃗)⟩⟨n′(R⃗)| ∂H
∂Rν

|n(R⃗)⟩

(ϵn(R⃗)− ϵn′(R⃗))2
(563)

.

6.3 Berry curvature of Bloch Bands

To describe the effects of topology on transport, we need to define Berry phase, etc. in a

basis of Bloch states. Consider an electron moving in a magnetic field described by vector

potential A and a periodic lattice potential V (r),

H =
1

2m

[
p+

e

c
A
]2

+ V (r) (564)

Bloch eigenstates obey ψnk(r) = eik·runk(r) where by substituting ψnk into the Schrödinger

equation, we see that unk(r) satisfies a “k-dependent Schrödinger equation”

h(k)unk = ϵn(k)unk, (565)
118It’s easy to see that if the trajectories wind around the flux n times, a factor n appears on the right hand side.
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and

h(k) ≡ 1

2m

[
p+ k+

e

c
A
]2

+ V (r). (566)

Here I make a few remarks on the magnetic Bloch bands. In the presence of a uniform magnetic field in a 2DEG,

the states are the usual Landau levels. The standard treatment is in Landau gauge, which gives a “band index"

corresponding to the Landau level, and a momentum ky (see our discussion of the vortex lattice in a superconductor),

so it looks like band theory in a solid to a certain extent. But the wave vector ky is of course 1D and gauge-dependent.

We can write ordinary Landau level wave functions for a translationally invariant 2DEG in Bloch form by using the

fact that there is a huge degeneracy of each level, and taking a linear combination that has the Bloch structure. One

might start by wondering if we can even label our eigenstates in the 2DEG with a momentum index, since although

B is uniform A is not. The solution is found by examining how A transforms under lattice translations. Since we

must have

∇×A(r) = ∇×A(r+ a) = B (567)

A(r) and A(r+a are related by a gauge transformation, A(r+a) = A(r)+∇fa(r), where the translated Hamiltonian

H ′ = eiϕa(r)He−iϕa(r), and ϕa(r) = efa/c. Even in the 2DEG we can define a magnetic lattice of unit cell area

axay = 2πℓ2, where ℓ2 = c/(eB), as in the Abrikosov problem. Then one can construct Bloch like functions with

momentum index k confined to a Brillouin zone associated with the magnetic unit cell119. There are some slight

differences with ordinary Bloch states under translation. The magnetic translation operator that commutes with H

has the phase factor

T̃a = eiϕaTa (568)

so the magnetic Bloch functions satisfy generalized periodic boundary conditions

T̃aunk = eiϕa(r)unk(r+ a) = unk(r). (569)

In the Landau gauge ϕa = −2πy/ay.

The presence of a periodic lattice potential changes things a bit in that Landau subbands are introduced, i.e. the

degeneracy of the Landau levels is broken. However the Bloch bands obey the same type of relation under translation,

with general ϕa. For a more complete discussion, see e.g. Girvin and Wang, Ch. 12.

Using our discussion of the Berry phase, we see that k can be thought of as a kind of

parameter (restricted to the 1st Brillouin zone, since we carry along the band index n) of

the Hamiltonian h(k). Therefore we can define the corresponding Berry curvature for each

band. Recalling that in the case of a D = 3 parameter space we can formulate the theory in

terms of a Berry flux, we have immediately for each band n

b⃗n = i⟨∂kunk| × |∂kunk⟩. (570)

It is important to examine the role of symmetry on the Berry curvature, particularly time

reversal (T ) and space inversion or parity (P). Under (T ), v → −v, k → −k, and E → E.

Under (P) we have v → −v, k → −k, and E → −E. Comparing with (570 ), or see later

explicit (585) we have

T : b⃗n(k) = −b⃗n(−k) (571)

P : b⃗n(k) = b⃗n(−k). (572)
119For full discussion see Girvin & Wang Ch. 12.
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Thus, if both T and P are symmetries of the system, b⃗n(k) = 0.

We now take up the subject of the semiclassical equations of motion of an electron wave

packet in a solid. This is one of these lovely problems involving Berry phase where the

solution was “well-known", to the extent that it was included in textbooks (cf.Chapter 13

of Ashcroft & Mermin) and used in countless research papers, but later turned out to be

incorrect (in some special situations). The Berry flux (570) leads to a correction to the

“standard" average velocity of Bloch states in the presence of a uniform electric field. The

“standard" derivation for a wave packet characterized by r,k subject to slowly varying fields

gives

dr

dt
=

∂ϵk
∂k

(573)

dk

dt
= −eE− e

c

(
dr

dt

)
×B(r). (574)

In quantum mechanics the expectation value of the velocity operator in the absence of

external fields is120

⟨ψnk|v|ψnk⟩ = ⟨unk|
∂h

∂k
|unk⟩ =

∂ϵn(k)

∂k
. (577)

An external field modifies |ψnk⟩ and will change ⟨v⟩. For example, if we add a uniform

electric field to the Hamiltonian V = eE · r, it will change the wave functions by

δ|ψnk⟩ = eE ·
∑

n′ ̸=n,k′

|ψn′k′⟩⟨ψn′k′ |r|ψnk⟩
ϵnk − ϵn′k′

(578)

= eE ·
∑

n′ ̸=n,k′

|ψn′k′⟩⟨ψn′k′ |[r, H]|ψnk⟩
(ϵnk − ϵn′k′)2

(579)

= ieE ·
∑

n′ ̸=n,k′

|ψn′k′⟩⟨ψn′k′|v|ψnk⟩
(ϵnk − ϵn′k′)2

, (580)

where v = p/m = −i∇/m, and the |ψnk⟩ are the eigenfunctions of the E = 0 Hamiltonian121.

It is easy to check that the matrix elements ⟨ψn′k′ |v|ψnk⟩ are proportional to δkk′ . This is

because the integral over all space
∫
d3r =

∑
R

∫
R
d3r, and the integrand in each unit cell is

identical except for a factor ei(k−k′)·R, which vanishes when summed over R unless k = k′.
120This follows from Hellman-Feynman theorem: if H[λ] is a Hamiltonian depending on a parameter λ, |n(λ)⟩ is an eigenstate,

and E(λ) is an eigenvalue,

∂E

∂λ
= ⟨n(λ)|

∂H(λ)

∂λ
|n(λ)⟩. (575)

Note further that for our Hamiltonian, pψnk = eik·r(p+ k)unk. so treating k as a parameter and taking A = 0,

⟨ψnk|v|ψnk⟩ = ⟨ψnk|
p

m
|ψnk⟩ = ⟨unk|

(p+ k)

m
|unk⟩ = ⟨unk|

∂h(k)

∂k
|unk⟩ = ∇kϵnk (576)

121Note that we are assuming a set of Bloch levels labelled by n,k and considering only the change in the wave function due

to the electric field. There will be additional terms if we treat the magnetic field as a perturbation on the field-free levels.
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So

δ|unk⟩ = ieE ·
∑
n̸=n′

|un′k⟩⟨un′k|∂h∂k |unk⟩
(ϵnk − ϵn′k)2

. (581)

Therefore there are several contributions to the average velocity to 1st order in E,

⟨v⟩ = ⟨unk|
∂h

∂k
|unk⟩+ (δ⟨unk|)

∂h

∂k
|unk⟩+ ⟨unk|

∂h

∂k
δ|unk⟩ ≡

∂ϵn
∂k

+ va(n,k), (582)

where the anomalous velocity is given by

va(n,k) = ie
∑
n′ ̸=n

⟨unk|∂h∂k |un′k⟩
[
E · ⟨un′k|∂h∂k |unk⟩

]
− c.c.

(ϵnk − ϵn′k′)2
. (583)

If the first vector in the numerator is a and the second term b ·c, then since c.c. turns a ↔ c

this may be written

va(n,k) = ieE×
∑
n′ ̸=n

⟨unk|∂h∂k |un′k⟩ × ⟨un′k|∂h∂k |unk⟩
(ϵnk − ϵn′k′)2

(584)

= eE× b⃗n(k), (585)

where in the last step we used (563) and specialized to 3D to define b⃗n(k).

The addition of the anomalous velocity term makes the semiclassical equations symmet-

ric122 (compare Eq. (574):

dr

dt
=

∂ϵk
∂k

+

(
dk

dt

)
× b⃗n(k) (586)

dk

dt
= −eE− e

c

(
dr

dt

)
×B(r). (587)

6.4 Integer Quantum Hall Effect

We now specialize this rather general formalism to a 2D electron system in Hall geometry, i.e.

in crossed electric and magnetic field perpendicular to the 2D system. This is the geometry

where the Integer Quantum Hall Effect (IQHE) was discovered by von Klitizing in 1980

(Nobel prize 1985). I will describe the effect and some basic concepts of how it works before

returning to the Berry formalism to show how it allows us to understand the IQHE and

identify it as a fundamental paradigm of topological matter.

This discussion is taken mostly from Chs. 12 and 13 in Girvin and Yang.

In Fig. 47, we see a measurement of the IQHE in a MOSFET (Metal-Oxide-Semiconductor

Field Effect Transistor), which includes some strange aspects. The Hall resistance exhibits

plateaux at which the resistivity value is ρxy = h/ne2, n an integer (recall in 2D resistance
122I didn’t really calculate change in wave function perturbatively due to magnetic field, so you have to go back and complete

this step as well.
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Figure 47: IQHE: Hall resistivity vs. magnetic fields showing plateaux at ρxy = h/ne2. (n is labelled i in

the figure).

and resistivity are the same, RH = ρxy). The longitudinal resistivity ρxy goes to zero for

wide regions of the field B, and then recovers to a finite value only over the transition region

between plateaux. The data look extremely clean, and one could imagine that what one was

observing was characteristic of a clean, idealized 2DEG123.

However there is a problem with this picture. Ignore the background ionic lattice for the

moment, and consider a perfectly clean 2DEG in the xy plane exposed to a perpendicular

magnetic field. In the laboratory frame, v = 0, E = 0, and B = Bẑ. If the system is

quantum, the eigenvalues are the Landau levels (LL), E = nωc, with cyclotron frequency

ωc = eB/mc. In a large system, each LL is massively degenerate with “filling" (degeneracy)

ν = Ne/NΦ, with Ne the number of electrons in the system and NΦ = BL2/Φ0 the number

of flux quanta ϕ0 = hc/e passing throug the system.

Now in a frame moving with respect to the lab with constant velocity v electrons have

(average) velocity v, E = −1
c
v×B, and B = Bẑ. We can define the current to be j = −env,

where n is the density of electrons, in which case the induced electric field E = B
nec

j × B,

perpendicular to both the longitudinal current and the magnetic field. This is the Hall field.

The linear response coefficients are defined

jµ = σµνEν (588)

Eµ = ρµνjµ (589)

we get the response tensors

ρ =
B

nec

 0 1

−1 0

 (590)

σ =
nec

B

 0 −1

1 0

 (591)

123This was before higher mobility samples showed addiitonal plateaux at rational fractional indices, the fractional quantum

Hall effect (FQHE).
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In other words, ρxy ∝ B, i.e. a linear behavior with no plateaux to speak of. The argu-

ment depends only on Lorentz invariance, and should not depend on whether the system

is quantum or classical. So what is missing? It must be that our assumption of a perfect,

translationally invariant 2DEG is wrong. And of course it must be, because real samples

always contain impurities at fixed positions that destroy this latter symmetry.

When we think about this more deeply, it is even more puzzling. In two dimensions,

Anderson localization at B = 0 is supposed to affect all bulk states, such that electrical

conduction at T = 0 is not possible at all. Applying a magnetic field should localize states

further. So how is it possible to have a longitudinal current and generate a Hall voltage

at all? “It turns out" (see Girvin and Yang, chs. 12 and 13) that each Landau level is

indeed broadened by disorder, as one would expect, but there is for each level “one" state

that remains extended and can therefore carry a current. This turns out to be a quantum-

mechanical edge state, the analog of a “skipping orbit" one might have in a semiclassical

description, where the electron conducts half a circular orbit in the field, specularly reflects,

and then continues skipping around the edge. Such states are confined to the edge of the

sample, and as such are not included in the system considered to lead to localization of

all states in 2D. In addition, “one can show" they are protected from backscattering, and

therefore carry a dissipationless current. This is because they cannot mix with the bulk

states, and other edge states are localized a distance the size of the sample away, so matrix

elements for decay fall off exponentially with this distance. We will discuss this topological

protection more below.

For now, let us simply examine the consequences of this picture for the IQHE. As shown

in Fig. 48, the extended states are at the center of the Landau level, as we would expect

because they are immune to the effects of disorder. As the field is increased, the various LL’s

pass through the Fermi energy one at a time. When the Fermi energy sits anywhere except

for the center of a LL, it is in a region of localized states, so σxx = 0, and the states are

occupied smoothly with no change in Hall voltage (plateau). When the Fermi energy sits in

an extended state, a current can flow, so the longitudinal conductivity has a peak and the

Hall voltage makes a transition. Thus the observation of the IQHE depends existentially on

the existence of disorder.

Let’s now return to the semiclassical equations of motion (587) including the anomalous

velocity term. Imagine solving first the QM problem of the electron moving in a (not neces-

sarily weak) uniform field perpendicular to a lattice. The Landau levels will be labelled by

n,k with k = kx, ky. The “periodic” part of the Bloch wavefunctions will be unk(r). Now

apply an electric field along x. We will examine the drift velocity of electrons in this electric

field along y, which will be, according to (587), proportional to va ∝ E × b⃗n, the fictitious
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Figure 48: Broadened Landau Levels with localized bulk states everywhere except for extended edge states

at center of level, and corresponding conductivities.

Lorentz force. There is no need to consider an explicit magnetic field in the equations any

more, since its effect is included in the new |nk⟩ (T -breaking is reflected in nonzero b⃗n).

Note va is along y since E||x and b⃗n(k) is along z since the vectors a, c discussed above are

in the plane due to the 2 dimensionality of the system. We neglect the ∂ϵ
∂k

component along

y because when we sum over the BZ it will not yield a net current, and the ordinary E×B

term since we take B = 0 since it is accounted for in the eigenstates unk already. Thus the

drift velocity is just va, so we may write the current density from a given filled LL n as

jn =
−e
A

∑
k∈BZ

va ≡ σE (592)

where A = a2 is the area of the magnetic unit cell, a =
√
c/eH is the magnetic length, and

σ is the conductivity tensor. So the Hall conductivity is

σxy =
e2

A

∑
k∈BZ,n

bn(k) =
e2

(2π)2

∑
n

∫
BZ

dkxdky bn(k). (593)

So quite generally the Hall conductance is proportional to the total Berry curvature of all

bands. To understand at least the topological essence of the integer QHE, it remains only

to show that

1

2π

∫
BZ

dkxdky bn(k) = Cn, (594)

where Cn is a topological integer called the Chern number, to find immediately the usual

result that σxy = e2n/(2π) → (e2n)/h, where in the last step I put in ℏ to get the correct

dimensions. The Hall conductance is quantized in units of e2/h, as discovered by von Klitzing.

144



To prove this, start with the left hand side of (594) and use Stokes:

1

2π

∫
BZ

∇k ×An(k) =
1

2π

∮
An(k) · dk (595)

=
1

2π

∮
dk ·

∫
d2r u∗nk(r)∇kunk(r) (596)

where the closed path is the edge of the Brillouin zone. Thus it becomes important to relate

the wave function ψnk on both sides of the Brillouin zone, separated by a reciprocal lattice

vector G. In general they are identical up to a phase:

ψnk(r) = eiθψnk+G (597)

In a normal periodic system Bloch says that θ = G · r, in which case θ has no k dependence;

there will then be a cancellation of the integrand from opposite sides of the BZ due to the

direction of the path, so we will get Cn = 0. But as we have seen above there is an additional

phase factor that can occur in a magnetic system under translation. If this phase depends

on a nontrivial way on k, we can get a different result. Inserting the phase factor into ψnk

via

ψnk(r) = e−iθn(k)ψ̃nk(r), (598)

with ψ̃nk+G = ψ̃nk, we find for the right hand side of (596)

1

2π

∮
dk · ∇kθn(k) = Cn. (599)

Note the left hand side is just the same mathematically as the circulation of the superfluid

velocity in a vortex, and is quantized for the same reason.

6.5 Graphene

Graphene is a single layer of graphite, identified as an interesting system early on by theorists,

but considered unrealizable in practice until it was isolated using “scotch tape” in 2004 by

Geim and Novoselov (Nobel Prize 2010). Graphene has a honeycomb lattice structure, which

must be described as a Bravais lattice with a basis, hence has two primitive vectors which

may be chosen, e.g. as

a⃗1 =
a

2
(x̂+

√
3ŷ), a⃗2 =

a

2
(−x̂+

√
3ŷ), (600)

where a is the lattice constant of the triangular Bravais lattice. The reciprocal space is

spanned by

b⃗1 =
1

a
(x̂+

ŷ√
3
), b⃗2 =

1

a
(−x̂+ ŷ√

3
), (601)
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Figure 49: Graphene direct and reciprocal lattice structure

so it is convenient to write any vector in 1st BZ as k = κ1⃗b1 + κ2⃗b2, π/a ≤ κ1,2 ≤ π/a. The

tight-binding Hamiltonian is

H = −t
∑

⟨iα,jβ⟩

(c†iαcjβ + h.c.) +
∑
iα

mαc
†
iαciα, (602)

where i, j label different unit cells, while α, β = 1, 2 label the basis sites within each cell. For

the moment I’ve suppressed the spin indices. mα is an on-site energy which can be different

on the two sites within the cell. This might be the type of term you would include in the

model Hamiltonian if you wanted to describe a plane of two different atoms on the A and B

sublattice, e.g. boron nitride instead of graphene. Let’s consider in particular a site energy

+ on A and - on B, mα = (−1)αm. Now diagonalize H by transforming to the new basis

c†iα =
1√
N

∑
k

c†kαe
−ik·Ri . (603)

In this simplest tight-binding approximation, note ⟨iα, jβ⟩ means hoppings only connect

sublattices A(1) and B(2),

H = −t
∑
i

(
c†i1ci2 + c†i1ci−a⃗1,2 + c†i1ci−a⃗2,2 + h.c.

)
+
∑
iα

mαc
†
iαciα

= −t
∑
k

[
c†k1ck2

(
1 + e−ik·⃗a1 + e−ik·⃗a2

)
+ c†k2ck1

(
1 + eik·⃗a1 + eik·⃗a2

)]
+
∑
kα

mαc
†
kαckα. (604)

Note that the sum k runs over the hexagonally shaped 1st Brillouin zone of the triangular

lattice (Fig. 1). This can be represented in a simple way if we identify the sublattice degree

of freedom 1,2 as a pseudospin υ, ↓, and rewrite
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H = − t

2

∑
kαβ

[
σ+
αβc

†
kαckβ

(
1 + e−ik·⃗a1 + e−ik·⃗a2

)
+ σ−

αβc
†
kαckβ

(
1 + eik·⃗a1 + eik·⃗a2

)]
+

+m
∑
kα

σzααc
†
kαckα, (605)

where σ± = σx ± iσy. To compactify even further, introduce a vector d such that

dz(k) = m

d±(k) = −t
(
1 + e∓ik·⃗a1 + e∓ik·⃗a2

)
dx(k) =

1

2
(d+(k) + d−(k)) = −t (1 + cosk · a⃗1 + cosk · a⃗2)

dy(k) =
1

2i
(d+(k)− d−(k)) = −t (sink · a⃗1 + sink · a⃗2) (606)

such that the Hamiltonian takes the form

H =
∑
k,α,β

d · σ⃗αβc†kαckβ. (607)

Now we can find the eigenvalues and eigenstates of H easily by using the properties of the

Pauli matrices. Let H =
∑

kαβHαβ(k)c
†
kαckβ with H(k) = d(k) · σ⃗ and note that124

H2(k) = (d(k) · σ⃗)(d(k) · σ⃗) = didjσ
iσj = d(k) · d(k) + σ⃗ · (d× d)

= d(k) · d(k). (608)

So eigenvalues are

ϵ±(k) = ±
√
d(k) · d(k), (609)

i.e. two bands symmetric around zero energy. If the “mass” m =0, all atoms are alike, dz = 0,

and both dx(k) and dy(k) vanish at two distinct wave vectors in the Brillouin zone:

k · a⃗1 = κ1 =
2π

3
, k · a⃗2 = κ2 = −2π

3
, (610)

so that kx = (κ1 − κ2)/a and ky = (κ1 + κ2)/(
√
3a). Recalling

k = κ1⃗b1 + κ2⃗b2 = κ1
1

a
(x̂+

ŷ√
3
) + κ2

1

a
(−x̂+ ŷ√

3
) (611)

Now we can rewrite

dx(k) = −t(1 + cosκ1 + cosκ2) = −t

[
1 + 2 cos

kxa

2
cos

√
3kya

2

]

dy(k) = −t(sinκ1 + sinκ2) = −2t cos
kxa

2
sin

√
3kya

2
(612)

which vanish when

kx =
4π

3a
, ky = 0 (613)

kx =
−4π

3a
, ky = 0 (614)

124Recall σi2 = 1, σiσj = iϵijkσ
k for i ̸= j, and (a⃗ · σ⃗)(⃗b · σ⃗) = (a⃗ · b⃗)I + i(a⃗× b⃗) · σ⃗
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Figure 50: Graphene Dirac points.

Of course these are just two of the 6 k related by 60◦ rotations where the bands touch.

Now let’s expand the Hamiltonian around the 2 Dirac points we’ve picked. Let kx =

k0x + δkx, ky = δky, and expand the cos and sin’s. Result is

dx± = ±
√
3ta

2
δkx (615)

dy± =

√
3ta

2
δky, (616)

where ± just means the two points with kx = ±4π
3a

.

Now let v =
√
3ta/2 (dimensions of velocity), and rewrite

H+(k) = v(kxσ
x + kyσ

y) (617)

H−(k) = v(−kxσx + kyσ
y), (618)

and for fun (now; later it will be important), let’s add the mass term which distinguishes

the two sublattices:

H+(k) = v(kxσ
x + kyσ

y) +mσz

H−(k) = v(−kxσx + kyσ
y) +mσz, (619)

and again the eigenvalues can be found by constructing H2
±, so that we have two bands

ϵ(k) = ±
√
v2k2 +m2, (620)

i.e. we have the dispersion of a massive Dirac particle. When m = 0 the Dirac fermion has

a linear spectrum; this corresponds to true graphene.
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6.6 Quantum spin Hall effect and Kane-Mele model

Reference: Kane and Mele, PRL 95, 226801 (2005).

We will start by considering the Hamiltonian (619) as a model of something, and add some

new physics to make it more interesting. One question is what types of terms can induce a

gap in the graphene Hamiltonian. We have already seen that splitting the sublattice “masses”

can do so, with a termmσz. There is another type of term that can do so, that was discovered

by Haldane. Interesting effects, in particular a transition to a topological state, can arise

from the competition between these two types of masses.

Before we go further, let’s discuss the effects of parity (P : k → −k) and time reversal

(T : k → −k, S → −S). Recall σi in (617) acts on the sublattice degree of freedom.

Let’s call the two symmetry-distinct band touching wave vectors k± = ±(4π/(3a), 0), and

introduce a new pseudospin variable (sometimes called “valley degeneracy”) τ⃗ which acts on

the k± degree of freedom. Then instead of writing H±(k) let’s just write H(k) with

H(k) = v(kxτ
zσx + kyσ

y) +mσz, (621)

where I’ve included our sublattice mass modulation term. Let’s examine the effects of parity

and time reversal on this H. First of all, parity takes sublattice 1 into 2 and vice versa, so

that

P : σz → −σz. (622)

(Under P , σx → σx and σy → −σy, so d(k) · σ⃗ (graphene) is invariant [check!]). But P also

interchanges k± so

P : τ z → −τ z. (623)

So if we ever had a term like τ zσz it would be invariant under P , but violate time

reversal (T ). To see this, note that since all momenta change sign under time reversal,

T : τ z → −τ z. However time reversal does not affect the sublattice degree of freedom,

T : σz → σz, so this term breaks T . A term mHτ
zσz will therefore gap the Dirac points

but H will break different symmetries than the H with sublattice mass m; this is the model

invented by Haldane (Haldane Phys. Rev. Lett. 61, 2015 (1988)), as shown in Fig. 51,

which consists of imaginary second-neighbor hoppings that flip sign upon reversal. Haldane

showed that this model has a nonzero Chern number and therefore a nonzero quantum Hall

effect without the need for any external field.

Kane and Melé asked if one could generate a term which is invariant under both P and

T . This is essentially two copies of the Haldane model, where the Haldane mass (hoppings)

has one sign for spin up, and the other for spin down.This is a simplified version of the spin-

orbit interaction in these materials. Let’s imagine adding a term to the nearest-neighbor
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Figure 51: Sense of hoppings leading to positive hopping in Haldane Hamiltonian or spin-up Kane-Melé

spin-orbit Hamiltonian.

tight-binding Hamiltonian we have so far involving imaginary spin-dependent hoppings on

the next-nearest neighbor bonds, as shown in Fig. 51. Remember that until now we have

suppressed the true electron spin, but we will now bring it back in the form of an interaction

σzτ zSz, (624)

where Sz is the z-component of the electron spin. Since T : Sz → −Sz, and S doesn’t care

about parity, the product of all three is invariant under T ,P . Thus

HSO = −it2
∑

⟨⟨i,j⟩⟩αβ

νij(S
z)αβc

†
iαcjβ + h.c., (625)

where νij = −νji = ±1, depending on the orientation of the two nearest neighbor bonds d1

and d2 the electron traverses in going from site j to i. νji = +1(−1) if the electron makes

a left (right) turn to get to the next nearest neighbor site (see arrows in Fig. 51). (Check

that this tight-binding model can be put into a form H(k) = mHτ
zSz for each Sz.)

Now, including spin dependence, νij(Sz) can be written in a coordinate independent

representation as d1 ×d2 ·S. Just as with the nearest-neighbor hopping for the tb graphene

model, we can Fourier transform (625) and calculate corrections to d(k), and then linearize

around the Dirac points. This gives a term in our compact notation (check!!!)

HSO(k) = ∆SOσ
zτ zSz, (626)

which is invariant under both T ,P as discussed above. ∆SO turns out to be 3
√
3t2.125

125Remember the origin of spin-orbit coupling in atoms: it’s a relativistic effect which can be understood crudely by boosting

to a moving electron’s frame, and saying there is a magnetic field B due to the moving charged nucleus (or here, the ionic

lattice), equal to B = (v ×E)/c = (p×E)/(mc). B acts on the electron spin, thus coupling spin and momentum.
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Remarks:

• Notice that there is no term in the Hamiltonian at present which actually couples up

and down real electron spin. Kane and Mele showed however that provided the gap

does not close, the system is robust against the addition of terms Sx, Sy.

• Since T and P are preserved, we expect no total Chern number and therefore no in-

teger quantum Hall effect in this system. The spin-up and spin-down currents cancel.

However there is a so-called “spin Hall effect”, as we will see below.

6.6.1 Sz = 1

Therefore let’s consider one spin sector at a time. For spins up, Sz = 1, we have

H(k) = v(kxτ
zσx + kyσ

y) + ∆SOσ
zτ z, (627)

or for each “valley” (Dirac point) separately:

H+(k) = v(kxσ
x + kyσ

y) + ∆SOσ
z (628)

H−(k) = v(−kxσx + kyσ
y)−∆SOσ

z. (629)

This is the same situation we analyzed for the sublattice mass problem, so we know

ϵ(k) = ±
√
v2k2 +∆2

SO. (630)

Now let’s reintroduce the mass, which cared about sublattice but not about valley pseu-

dospin. Therefore if we have both m and ∆SO we get

H+(k) = v(kxσ
x + kyσ

y) + (m+∆SO)σ
z (631)

H−(k) = v(−kxσx + kyσ
y) + (m−∆SO)σ

z. (632)

Now we can consider two extreme possibilities. First, imagine m >> ∆SO. As discussed

above, this opens up a gap m at the Dirac points, so we have an insulator simply because

we put a different potential on the 1 and 2 sublattices. This is called an “atomic” or “trivial”

insulator. Now increase ∆SO relative to m. Nothing happens in the H+ block, but in the

H− block the gap closes and reopens again when ∆SO > m. The ∆SO > m insulator is

separated from the atomic insulator by a gap-closing phase transition. Therefore

(see below) the distinction between the two is topological.

Let’s investigate what this really means by looking at the response of the system to an

applied field. We are really interested in the T invariant case without field, but it will help

us to classify the states and then we will take the field strength to zero. To include the field

we will replace k everywhere by −i∇+ e
c
A, and choose gauge A = xBŷ for a field Bẑ. This

gives for valleys ±:
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H+ = −iv ∂
∂x
σx +

(
−i ∂
∂y

+
x

ℓ2B

)
σy + (m+∆SO)σ

z (633)

H− = iv
∂

∂x
σx +

(
−i ∂
∂y

+
x

ℓ2B

)
σy + (m−∆SO)σ

z, (634)

where ℓB =
√
c/eB is magnetic length. Again we will use the trick of squaring H± in order

to find the eigenvalues. For example

H2
+ =

[
−iv ∂

∂x
σx + v

(
−i ∂
∂y

+
x

ℓ2B

)
σy + (m+∆SO)σ

z

]
·
[
−iv ∂

∂x
σx + v

(
−i ∂
∂y

+
x

ℓ2B

)
σy + (m+∆SO)σ

z

]
= −v2 ∂

2

∂x2
+ v2

(
i
∂

∂y
+

x

ℓ2B

)2

+ (m+∆SO)
2 + cross− terms.

and for the cross-terms we use the anticommutation of the Pauli matrices σiσj = σjσi for

i ̸= j. Check then that these just reduce to −iv2iσz(1/ℓ2B)[(∂/∂x), x] = (v2/ℓ2B)σ
z, so

H2
+ = −v2 ∂

2

∂x2
+ v2

(
i
∂

∂y
+

x

ℓ2B

)2

+ (m+∆SO)
2 + ω2

Bσ
z, (635)

where ωB = v/ℓB is the Dirac cyclotron frequency, and ℓB =
√
c/(eB) is the magnetic

length. Note the first two terms have the form of H (not H2) for a regular 2DEG with

“mass” 1/(2v2). The corresponding “cyclotron frequency” is

ωeffc =
eB

mc
≡ 2v2

ℓ2B
= 2ω2

B. (636)

Thus the eigenvalues of H2
+ can be read off

2ω2
B(n+ 1/2) + (m+∆SO)

2 + ω2
Bσ

z ; n = 0, 1, 2..., (637)

and the spectrum of H+ itself is

ϵn+ = ±
√

2ω2
Bn+ (m+∆SO)2 ;n = 1, 2, .... (638)

ϵ0+ = −(m+∆SO). (639)

Now one can go back and do the same thing for H− (still for real spin up!), and find

H2
− = 2ω2

B(n+ 1/2) + (m−∆SO)
2 − ω2

Bσ
z (640)

ϵn− = ±
√
2ω2

Bn+ (m−∆SO)2 ;n = 1, 2, .... (641)

ϵ0− = m−∆SO. (642)
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Eigenvalues −ϵ0+ and −ϵ0− do not occur although they are in principle square roots of

eigenvalues of H2
±. 126. Now when m > ∆SO, we have the same number of Landau levels

above and below zero energy. The Hall conductivity with ϵF = 0 is therefore σxy = 0.

However, once ∆SO > m, both ϵ0+ and ϵ0− are below ϵ = 0, so there is one extra filled

Landau level in this case so that the Hall conductivity becomes σxy = e2/h.127 Now notice

that the ordering of levels or the sign of their energies did not depend on the

strength of the applied field B. Thus we can take B → 0 and will be left with

an insulator (quantum Hall insulator) which displays σxy = +e2/h for Sz = 1, i.e.

spins ↑.

6.6.2 Sz = −1

Now follow exactly the same steps for Sz = −1. For completeness I’ll write it out explicitly,

but basically only signs of ∆SO terms change:

H(k) = v(kxτ
zσx + kyσ

y) +mσz −∆SOσ
zτ z, (643)

H+(k) = v(kxσ
x + kyσ

y) + (m−∆SO)σ
z (644)

H−(k) = v(−kxσx + kyσ
y) + (m+∆SO)σ

z. (645)

so the Landau level structure is

ϵn+ = ±
√

2ω2
Bn+ (m−∆SO)2 ;n = 1, 2, .... (646)

ϵ0+ = −(m−∆SO) (647)

ϵn− = ±
√

2ω2
Bn+ (m+∆SO)2 ;n = 1, 2, .... (648)

ϵ0− = m+∆SO. (649)

so when ∆SO > m, there is one more Landau level above ϵ = 0, so by the same argument

the Hall conductivity should become σxy = −e2/h, again even for B → 0. Thus the picture
126This is because the zero mode (eigenvalue) of the graphene Hamiltonian for a given valley is unique. For example for H+,

the zero mode and is an eigenstate of σz with eigenvalue σz = −1 (A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, and A. K. Geim Rev. Mod. Phys. 81, 109 (2009), pp. 126-127. I thank Ammar Jahin for discussing these aspects

with me.) Thus adding the mass m+∆SO shifts the zero mode down, hence ϵ0+ < 0. Now for the opposite valley τz = −1, the

eigenvalues are shifted by (m−∆SO)σz , which is indeed up if m > ∆SO, since this zero mode is an eigenstate with σz = +1,

but down if m < ∆SO. Only for m < ∆SO are there LL’s, that each contribute e2/2h to total σxy = e2/h for Haldane insulator,

representing a spontaneous IQHE in zero applied field. This is the same as the Kane-Mele model for the Sz = 1 sector, but σxy

is cancelled by −e2/h from Sz = −1 sector.
127In the integer quantum Hall effect we expect σxy = ne2/h for a filled Landau level. For graphene ϵF at the Dirac point,

σxy = 0, due to two doubly degenerate levels corresponding to n = 0.
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which emerges is that of an insulator which differs from the trivial one in that spins have finite,

but opposite Hall conductivities even in zero field, due to the spin-orbit interaction. Thus

spins up and down will accumulate on opposite sides of a Hall bar carrying a longitudinal

electric current due to an applied electric field. This is not unique to topological insulators,

of course, but is a property of semiconductors with spin-orbit coupling.

Figure 52: Spin-carrying edge states in a topological insulator. From Qi and Zhang, Physics Today 63 (1),

33–38 (2010).

6.7 Edge states

In fact we haven’t yet shown that the spin current is carried by edge states, as in Fig. 52.

This can be done by a gauge argument analogous to that given by Laughlin for the integer

QHE, or by explicit solution for a given geometry. The Schrödinger equation can be solved

numerically in finite geometry by imposing open transverse boundary conditions. In this

case Kane and Mele showed the solution (Fig. 5), which exhibits the bulk gapped Dirac like

states and two characteristic states which cross at the Dirac point and carry the current;

direct examination of the eigenfunctions shows that they are indeed edge states.

We can show without involved numerics that such edge states exist if we put in the “edge”

by a bit of sleight of hand. Consider for example the H− block for spin up Sz = 1. Assume

the sample has an edge at y = 0, and the sample exists for y < 0, and y > 0 is vacuum. There

will be some spatial variation along the y direction giving the edge state wave function, but

we can assume translational invariance along x and take kx = 0. Then the Hamiltonian is

H−(y) = −iv ∂
∂y
σy + (m−∆SO)σ

z ≡ −iv ∂
∂y
σy + m̃(y)σz, (650)

where I’m now considering a y-dependent potential given by m̃(y), which I will insist change

sign at the edge, such that m̃ is < 0 for y < 0, i.e. in the sample, m̃ > 0 for y > 0. We’re

looking for a zero-energy edge state wave function. Make the ansatz for the solution to the
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Figure 53: Energy bands for a strip of graphene with SO coupling. The bands crossing the gap are spin

filtered edge states. From Kane and Mele, PRL 2005.

Schrödinger equation

ψ(y) = iσyef(y)ϕ, (651)

where ϕ is a 2-component spinor field. Plugging in, we get(
v
df

dy
+ m̃(y)σx

)
ϕ = 0, (652)

which has the formal solution

f(y) = −1

v

∫ y

0

dy′m̃(y′) ; σxϕ = ϕ, (653)

i.e. ϕ is an eigenstate of σx with e-value 1. Note that the effect of iσy = exp iπ
2
σy is to rotate

by π around the y-axis. So the total solution is

ψ(y) = exp−
(
1

v

∫ y

0

dy′m̃(y′)

)
|σx = −1⟩. (654)

One can be more explicit by assuming an “edge” like m̃(y) = m̃0 tanh(y/y0), in which case

one finds ψ ∝ exp−(ym̃0/v) log cosh(y/y0), which is a state of width v/m̃0.

Remarks:

1. The fact that the state is an eigenstate of σx apparently reflects the fact that it mixes

the two sublattices by hopping along the boundary.

2. At finite kx, the same state has energy ϵ(kx) = −vkx, so that v(kx) = ∂ϵ(kx)/∂kx = −v.

3. For Sz = −1 we would take m̃→ −m̃ in the large ∆SO limit to find an edge state with

velocity in the opposite direction.

4. I chose arbitrarily one Dirac point H−. Could have chosen H+ as well. There should

be two edge state solutions there as well, one for each spin.
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6.8 Topological character of new insulating phase

We’ve been dancing around the obvious question, what’s actually topological about topolog-

ical insulators? This question is important because to qualify as a new state of matter they

need to have something fundamentally different, and the claim is that such new insulating

states do NOT (necessarily) break any symmetry, as do magnets, superconductors, crystals,

and other phases we regard as distinct. The claim is that there is a topological invariant

which characterizes such a phase, reflecting a finite energy gap towards deformation of the

state into a new phase of trivial topological invariant, i.e. the state is robust against small

perturbations.

To see this explicitly, let’s again take Sz = 1 and considerH±(k)

H+(k) = v(kxσ
x + kyσ

y) + (m+∆SO)σ
z (655)

H−(k) = v(−kxσx + kyσ
y) + (m−∆SO)σ

z, (656)

recalling that we can write the Hamiltonian in terms of a d-vector, H±(k) = d±(k) · σ⃗,

d±(k) = (±vkx, vky,m±∆SO), (657)

and define d̂± = d±/|d±|. d̂(k) defines a mapping of 2D momentum space kx, ky to a

unit sphere, for given v,m,∆SO. This mapping can be assigned a topological index (Chern

number)

n =
1

4π

∑
α

∫
d2k

(
∂kxd̂α × ∂ky d̂α

)
. · d̂α, (658)

Note this represents an integral of the Berry curvature, or the number of times that the

mapping taking the 2D k-space128 into the unit sphere represented by d̂. n is the number

of times the map wraps around the sphere as a function of k, and for smooth d̂ it may be

shown that n is always an integer. In Fig. 54 I sketch d̂± for the simple example given in Eq.

657. For m > ∆SO the dz component is a positive constant, i.e. dz > 0. Since ∂xd̂α × ∂yd̂α

points along ẑ, the Chern number is just the winding around a contour in the kx, ky plane

weighted by sgn dz which is +1 for m > ∆SO so since the windings are ±1 for valleys +

and −, the sum is n = 1
2
− 1

2
= 0. For the case m < ∆SO, however, the d̂z component is

reversed for d̂−, which means the winding numbers add, n = 1
2
(+1) + (−1

2
)(−1) = 1. This

index therefore distinguishes a trivial insulator from a topological one.
128In principle the mapping is performed from the torus (1st Brillouin zone) to the unit sphere. However for the graphene

case if the gap is small, the Berry curvature is concentrated in the neighborhood of the 2 Dirac points, so the edges of the zone

don’t contribute.
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Figure 54: d-vector for Haldane or K-M Hamiltonian. d̂± is plotted over a contour surrounding kx, ky = 0

and at kx, ky = 0. a) Case m > ∆SO showing different windings of d in plane for ± valleys. Winding

numbers cancel for 2 valleys. b) Topologically nontrivial case ∆SO > m. dz has negative sign for − valley,

leading to summing of two winding numbers to 1.

6.9 Kitaev model for 1D topological SC

The revival of interest in topological superconductivity may be due in part to an influential

paper written by Kitaev which introduced a model for a 1D p-wave superconducting chain,

HKitaev = −
∑
i

t(c†ici+1)− µc†ici +∆(cici+1 + h.c.), (659)

where i labels the sites on a chain, t is the NN hopping, µ the chemical potential and ∆

the p wave pairing amplitude for the spinless fermions which move on the chain. Note that

the Fourier transform of ∆cici+1 is i∆ sin k ckc−k, so that the gap in momentum space is

indeed of odd parity, which we will call p wave. An odd parity state of this type satisfies the

Pauli principle with its orbital sign change under particle exchange without the need for spin

degrees of freedom. Such a model is otherwise unphysical in many different ways, but has

the virtue that one can exhibit very simply the existence of two distinct topological sectors.

To see this, consider Fig. 56a): there are clearly two different situations with respect to the
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Figure 55: Kitaev 1D p-wave superconducting chain

chemical potential. It can lie inside the band, as in the standard BCS case; with the current

convention for the Hamiltonian, this means |µ| < t. Alternatively, it can lie outside the

band, |µ| > t; in this situation, BCS theory would say there is no superconductor. However,

within the model, we can simply assert that the range in energy over which states are paired

is very large, so that one can pair states away from the Fermi surface. It is interesting to

examine the bulk theory first to see if there are differences between the two sectors. The

ground state of the Hamiltonian is of course just the BCS wave function, which we write as

Πk(1 + ϕ(k)c−kck)|0⟩, (660)

where ϕ(k) ≡ vk/uk is the form factor for the occupied pair, or Cooper wave function. In

real space (1D), it is a function of the relative coordinate,

ϕ(r) ∼

 e−r/ζ |µ| > t strong pairing

const. |µ| < t weak pairing

We see that in the case labelled “strong pairing”, the pair size decays exponentially over a

Figure 56: (a) Definition of strong and weak pairing sectors according to value of µ. (b) Mapping of d̂ vector

onto unit sphere under sweep of k from 0 to π.

length scale ζ, ... (?), exactly as it does in the BCS theory when the interaction is made

comparable or large compared to the Fermi energy, resulting in a very different theory cor-

responding to the Bose-Einstein pairing of molecules. In 1D, the usual BCS case “weak
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pairing” has an infinitely long range pair size. This distinction does not guarantee a topolog-

ical difference between the two sectors by itself, but this can be shown as well. If we write

the Hamiltonian (659) in terms of a Nambu representation129

HKitaev =
1

2

∑
k

c⃗†kHkc⃗k, Hk =

 ϵk ∆k

∆∗
k −ϵk

 , (661)

with c⃗k = (c−k, c
†
k), ϵk = −t cos k − µ, ∆k = −i∆0 sin k, the matrix Hk may be written as a

sum over Pauli matrices,

Hk = h(k) · τ⃗ . (662)

It’s important that h(k) obey the symmetry hx,y(k) = −hx,y(−k) and hz(k) = hz(−k), which

it does if the gap has odd parity. Now define a new unit vector ĥ(k) ≡ h(k)/|h(k)|. We

can ask what the trajectory is on the unit sphere as k sweeps over the interval 0, π in the

Brillouin zone. At both 0 and π, the gap vanishes and the direction of ĥ is determined by

the sign of the kinetic energy ϵk, which we’ll call s0 and sπ, respectively. We see that in the

strong pairing sector we have either µ > t⇒ s0 = −1, sπ = −1 or µ < −t, such that s0 = 1,

sπ = 1. Thus in the strong pairing case the mapping to the unit sphere is trivial: the vector

ĥ(k) follows a trajectory as k runs from 0 to π on the unit sphere that begins and ends at

the same point. On the other hand if |µ| < t, s0 = −sπ, so the mapping goes from one pole

to the other. These are topologically distinct trajectories distinguished by the Z2 invariant

ν = s0sπ, which evidently can be 1 (trivial) or -1 (topological).

We now follow Kitaev and show that the finite chain exhibits Majorana end-chain ex-

citations. Majorana fermions130 can be thought of as half a Dirac Fermion. Each spin-

less fermion in our original Hamiltonian (659) may be written as a sum of Majoranas,

ci = (1/2)(βBi + iβAi), yielding

HKitaev = −µ
2

N∑
i=1

(1 + iβBiβAi)

− i

4

N−1∑
i=1

[(∆0 + t)βBiβAi+1 + (∆0 − t)βAiβBi+1] .

→ −i t
2

N−1∑
i=1

βBiβAi+1, (663)

where in the last step we set µ = 0 and ∆ = t, a special case where it can be easily shown

that the solution supports Majorana zero modes. This can be seen by noting that H now
129In the topological superconductivity literature, the matrix representation of the Hamiltonian in particle-hole space is usually

referred to as the Bogoliubov-de Gennes (BdG) representation, and the BdG symmetry, the antiunitary transformation which

involves exchanging a particle for a hole and complex conjugating, ΞHBdGΞ−1 = −HBdG is one of the symmetries (along with

time reversal and chiral symmetry) used to classify topological superconductors and insulators.
130Majorana fermions β are operators defined by Ettore Majorana as a possible description of the neutrino. Such objects are

defined to be their own antiparticle, β = β†, and obey the commutation relations {βi, βj} = 2δij .
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couples Majoranas A and B only at nearest neighbor sites. However there is no coupling for

the B Majorana on site N, nor for the A Majorana on site 0. These therefore cost zero energy

and are decoupled from the rest of the system. The rest of the system still has a gap for

excitations, since it’s a superconductor. So we have system with quite usual excitations above

a gap ∆ = t, but in addition two independent zero modes located at the chain ends. We

emphasize that the Majorana representation of the Hamiltonian was not necessary to obtain

this result: we can diagonalize the finite system in the ordinary fermionic representation like

any other mean field (BdG) Hamiltonian, and will find a zero-energy eigenstate whose wave

function has weight only on the two end sites. The more general case with ∆ ̸= t and |µ| < t

but µ ̸= 0 can also be solved and give the same qualitative picture, with the Majorana modes

decaying exponentially into the bulk of the chain.
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