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Reading:

1. Ch. 26, Ashcroft & Mermin

2. Ch. 7, Kittel

4 Electron-phonon interaction

4.1 Hamiltonian

The subtle interplay of electrons and phonons was explained in the

50’s by some of the earliest practitioners of quantum many-body

theory, leading eventually to an understanding of the mechanism

underlying superconductivity. Recall that the ions in a metal have

two basic effects on the electronic states: 1) the static ionic lat-

tice provides a periodic potential in which conduction electrons

must move, leading to the evolution of plane wave states in the

Fermi gas into Bloch waves in the crystal, and 2) the scatter-

ing of electrons by lattice vibrations, and vice versa. The first

effect will be ignored here, as we are essentially interested in long-

wavelength phenomena, where the differences between proper cal-

culations using Bloch waves and simpler ones using plane waves

are negligible. It suffices then to consider the phonons in a lattice

interacting with a Fermi gas in which the most important effects

of the long-range Coulomb interaction have been accounted for.

Without the Coulomb interaction, the phonon frequencies are

just those we would get from a classical model of balls of mass M

(ionic mass) connected by springs. For a 3D solid with 1 atom

per unit cell, there are 3N normal modes comprising 3 acoustic

phonon branches ωλk . When one includes the long-range Coulomb

interaction but neglects the electron-phonon coupling, one finds
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that the longitudinal acoustic mode has been lifted to the ionic

plasma frequency, ωionpl ' (4πZ2e2n/M)1/2. The terms of the

Goldstone theorem which insists on the existence of an acoustic

mode for each spontaneously broken continuous symmetry are vi-

olated by the long-range nature of the Coulomb force, and the

sloshing back and forth of the ion “fluid” at ωionpl occurs for the

same reason and at the same frequency (up to the mass difference)

that it does in the electron case. At this point we are seriously

worried that we don’t understand how acoustic phonons ever ex-

ist in charged systems. If one now includes the electron- phonon

coupling, however, the electronic medium screens the long-range

Coulomb interaction, leading to a finite interaction length and the

recovery of the Goldstone (acoustic) mode.

Let’s give a brief overview of where we’re going. I first want

to get to the point where we can write down the full Hamiltonian

for the problem. We want to show that it makes sense to write

the Hamiltonian describing the electron-phonon system as

H = H0
el +H0

ph +Hcoul +Hint, (1)

where

H0
el =

∑
kσ
ξkc

†
kσckσ (2)

H0
ph =

∑
kλ
ωkλ(a

†
kλakλ +

1

2
) (3)

HCoul =
1

2

∑
kk′q
σσ′

V (q)c†k′+qσ′c
†
kσck+qσck′σ′ (4)

Hint =
∑

kk′σλ
gkk′c

†
kσck′σ(a

†
−qλ + aqλ) (5)

where a†kλ creates a phonon with wave vector q ≡ k′ − k and

polarization λ, and gkk′ ∝ M−1/2 is the bare electron-phonon
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coupling. The unperturbed phonon Hamiltonian Hph is of course

just the sum of 3N independent harmonic oscillators in 2nd quan-

tized form, and the bare Coulomb matrix element in HCoul is

V (q) = 4πe2/q2. The derivation of the electron-phonon Hamilto-

nian Hint and its quantization is relatively straightforward, and I

will sketch it here.

4.1.1 Derivation of e−-ph coupling

Assume the ion is located at position Ri, at a displacement ui
from its equilibrium position R0

i . If the potential of the ion is

assumed to be rigid, the interaction energy of the electronic charge

density with the ions is simply1

Hint =
∑
iσ

∫
d3rψ†

σ(r)ψσ(r)V (r− Ri). (6)

For small amplitude vibrations, we can expand in powers of ui:

Hint =
∑
iσ

∫
d3rψ†

σ(r)ψσ(r)V (r− R0
i )

+
∑
iσ

∫
d3rψ†

σ(r)ψσ(r)ui · ∇Ri
V (r− Ri)|R0

i
+ . . . (7)

Now expand the field operators ψσ in terms of Bloch waves:

ψ(r) =
∑
k
ckσφk(r), (8)

where

φkσ(r + R0
i ) = eik·R

0
iφk(r) (9)

so the quantity which appears in Eq. (7) may be recast by per-

forming a shift by a Bravais lattice vector and using the periodicity

1This is for a Bravais lattice. If there is a basis one has to be a bit careful about labelling the lattice
sites with additional intracell indices, i.e. Riα, α = 1 . . .m, where m is number of atoms/cell.
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of ∇R0
i
V (r− R0

i ),

∫
d3rφ∗k′σ(r)φkσ(r)∇R0

i
V (r− R0

i )

=
∫
d3rφ∗k′σ(r + R0

j)φkσ(r +R0
j)∇R0

i
V (r− R0

i )

= ei(k−k′)·R0
j

∫
d3rφ∗k′σ(r)φkσ(r)∇R0

i
V (r− R0

i )︸ ︷︷ ︸ (10)

Wkk′ (11)

Now let us 2nd-quantize the displacement u as we did when we

were discussing the isolated phonon system,2

ui(t) =
1√
NM

∑
kλ
Q(k, t)eλ(k)eik·R

0
i (13)

with

Qλ(q) =
1√

2ωλ(q)

(
aλ(q) + a†λ(−q)

)
(14)

so interaction Hamiltonian can be rewritten

Hint =
∑

kk′σ
c†k′σckσ

∑
j
Wkk′e

i(k−k′)·R0
j

1√
NM

×

×∑
qλ
Qλ(q)eλ(q)eiq·R

0
j

=
∑

kk′σ

∑
λ
c†k′σckσ

(
Wkk′ · eλ(q)

)
Qλ(q)

√√√√√N
M

≡ ∑
kk′σλ

gkk′λc
†
k′σckσ

(
aλ(q) + a†λ(−q)

)
(15)

2Before we dealt primarily with the 1D chain, so I supressed the polarization indices. It is important
to recall that in a 3 dimensional system there are 3N normal modes (3mN if there are m atoms per
unit cell). For each value of k there are 3 acoustic (optical only if there are add’l atoms per unit cell
requiring index α) modes denoted by different values of the branch index λ. The vectors eλ(k) are the
polarization vectors of the modes and satisfy the orthogonality condition

∑
α

eλ
α(k) · eλ′

α (k) = δλλ′ (12)
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where now q due to momentum conservation (δ-function from

summing over j) is to be interpreted as

q = k − k′ + G (16)

withG is a vector of reciprocal lattice (arose because q was defined

to lie in 1st B-zone). The electron-phonon coupling constant is

gkk′λ =
(
Wkk′ · eλ(q)

) √√√√√√
N

2Mωionpl (q)
(17)

The final result, then, is that an electron in state k, σ can un-

dergo a scattering process with amplitude gkk′, ending up in final

state k′, σ by absorption (emission) of a phonon of momentum

q. This form is useful, but calculating gkk′ from first principles is

difficult because V is poorly known.

4.1.2 Jellium model

We can get some dimensionally reasonable results in the so-called

”jellium” model, where the ions are represented as a featureless,

positively charged elastic continuum,3 we will simply replace the

eigenfrequencies ωkλ of the neutral system by the constant ωionpl
according to the arguments given above. Again we expand the

crystal potential V (r−Rj) around the equilibrium sites R0
i . The

dispacements u(R) in the jellium gives a charge density fluctua-

tion4 −nZe∇ · u. This interacts with the electron gas through

the Coulomb interaction, leading to the interaction

Hjellium
int = Ze2 ∑

σ

∫
d3rd3r′ ψ†

σ(r)ψσ(r)
1

|r − r′|∇ · u(r′), (18)

3... justified by the large masses and correspondingly long timescales for ionic motion (Born-
Oppenheimer)

4Recall from E& M the polarization charge density is ρP = −∇·P, where P is the polarization, and
the polarization due to a density n of dipole moments p = Zeu is therefore nZeu.
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and then quantizing the ionic displacements ui = Ri − R0
i as in

Eq.(13), one finds

Hjellium
int =

∑
kk′σ

c†k′σckσ
(
aλ(q) + a†λ(q)

) 4πiq · eλ(q)

M 1/2

Ze2n

q2
(19)

Comparing with Eq. (15), we see that the effective e-ph coupling

constant in an isotropic system is

g(q) =
4πiZe2n1/2

qM
1
2

. (20)

4.1.3 Screening.

The first point I would like to review is the renormalization of the

electron-phonon coupling which leads to screening and the recov-

ery of the acoustic spectrum. The main point is to realize that

the singular behavior is due to the long-range Coulomb interac-

tion, which will be screened. Any time a phonon of momentum

q is excited, it creates charge density fluctuations because the

ions are positively charged. These then interact with the electron

gas. The bare potential created by the charge fluctuation is pro-

portional to the electron-phonon coupling constant, so screening

the ionic charge amounts to replacing the bare coupling g with a

screened coupling

ḡ(q, ωn) = g(q)/ε(q, ωn), (21)

where q = k′ − k and ε(q, ωn) = 1 − V (q)χ(q, ωn) is the RPA

dielectric constant. The frequency dependence of the dielectric

constant will become important for us on scales of the Debye

frequency ωD or smaller, and this is normally a very small scale by
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electronic standards! So for most purposes we keep a frequency-

independent screened coupling ḡ(q) ' g(q)/ε(q, 0).

We would like to see that this screening recovers acoustic modes

as observed and expected. The bare interaction Hamiltonian may

be written in the Jellium model as (see Eq. (15)

Hint =
∑
q
g(q)n−qQq (22)

with nq =
∑

q c
†
k+qck. Consider now the entire Hamiltonian for

the phonon coordinates, including the coupling to the electron gas

(recall derivation of normal modes for linear chain in Section 1):

Hph +Hint =
1

2

∑
q


 1

M
PqP−q +Mωionpl

2
QqQ−q + 2gqQqn−q




(23)

The Heisenberg equation of motion for the operator Qq becomes

(check!)

Q̈q + ωionpl
2
Qq + g−qnq = 0 (24)

We noted above that the ionic charge density fluctuation induced

by an ionic displacement u was enion = −nZe∇ · u; in Fourier

space with Eq. (13) this reads

nionq = −iZ
√√√√ n

M
qQq (25)

Also recall the definition of the dielectric constant

ε =
“external charge”

total charge
. (26)

Now the total charge fluctuation is just electronic + ionic nq+nionq ,

so

nq = nionq (1 − 1/ε) = −iZ
√√√√ n

M
qQq(1 − 1/ε) (27)
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= iZ

√√√√ n

M
qQq


 k2

TF

q2 + k2
TF


 , (28)

where in the last step we have used the Thomas-Fermi approxi-

mation for the dielectric function, ε = 1 + k2
TF/q

2.

ω2
phonon = ωionpl

2

1 − k2

TF

q2 + k2
TF


 . (29)

Equation of motion becomes

0 = Q̈q + ωionpl
2
Qq +


4πiZe2n1/2

qM
1
2




︸ ︷︷ ︸
iZ

√√√√ n

M
qQq


 k2

TF

q2 + k2
TF




= Q̈q + ωionpl
2


1 −


 k2

TF

q2 + k2
TF





Qq. (30)

So the phonon oscillation frequencies are

ω2
phonon = ωionpl

2

 q2

q2 + k2
TF


 (31)

Since k2
TF = 6πne2/EF , we do in fact recover acoustic phonons

iωn = cq as q → 0, with speed

c = (m/3M)1/2vF . (32)

So we have proven that sound propagates in a metal, which you

already knew, but it is important to remember that screening

makes it happen!
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4.2 Polarons

4.3 Bloch resistivity

4.4 Effective e− − e− interaction

For superconductivity it will be important to understand why

one electron attracts each other effectively by polarizing the lat-

tice. We now have at our disposal the effective screened electron-

phonon interaction with coupling constant gkk′ and renormalized

phonon frequencies ωλ(q). An interaction between electrons must

involve the 1st electron polarizing the lattice, and the second inter-

acting with this polarization, i.e. it must be a 2nd-order process

in the coupling constant g. We can represent these processes in

terms of Feynman-type pictures: The amplitude of the first pro-

q -q

k p

k-q p+q k-q p+q

k p

g g g g

Figure 1: Electron-electron interaction due to phonon exchange. Straight lines are
electrons, wiggly are phonons, vertices are e-ph coupling constants g.

cess, according to 2nd-order perturbation theory, where the 1st
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electron emits a phonon, is

V 1
q =

|gq|2
εk − εk−q − ωq

(33)

whereas for the process where it absorbs a phonon we get

V 2
q =

|gq|2
εp − εp+q − ωq

. (34)

Note as usual we have energy conservation at every scattering

event depicted in these processes, i.e.

εk + εp = εk−q + εp+q (35)

and I’ve assumed ωq = ω−q. According to quantum mechanics

the two amplitudes contribute additively:

Vq = V 1
q + V 2

q ==
|gq|2ωq

(εk − εk−q)2 − ω2
q

. (36)

Let’s analyze this expression for the “effective electron-electron

interaction” qualitatively. We will primarily be interested in εk−
εk−q � ωq, since this situation corresponds to electrons with

their momenta both quite close to the Fermi surface, well within

a shell of width ωD, a typical phonon energy.

• attractive

• ind. of k ⇒ isotropic

• rapidly decreases when εk − εk−q ∼ ωD.

• energy space: interaction spread over ωD ⇒ in time space it’s

retarded

• comparable when spread over time to Coulomb interactions:

some metals superconducting, some not.
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