
Final Exam Solutions–Spring 2023

Problem 1

No ”right answer”!.

Problem 2- one-phonon neutron scattering

Ashcroft-Mermin Problem 24-2 Allowed emitted phonon solutions follows from
Figure 24. 6 but taking ω(k) → −ω(k).

Problem 3 - Superconducting sphere

1. Outside sphere must have ∇⃗ · H⃗ = 0, ∇⃗ × H⃗ = 0
Near surface, picture like this locally

H

H

H

x

z

z

x

Since on these scales system is symmetric, H⃗ can only depend on z. There-
fore

0 = ∇⃗ · H⃗ = ∇z Hz(z) +∇x Hx(z) = ∇z Hz

So Hz is at most a constant ind. of z everywhere. This implies ∇⃗× H⃗ = 0
inside sphere too ⇒ no currents flowing ⇒ trivial solution.

The above shows that we must have H⃗ ∥ surface of sphere everywhere for
Meissner effect.

2. Look for soln. to ∇⃗·H⃗ = 0, ∇⃗×H⃗ = 0 outside sphere with BC. H⊥|r=a =

0, H⃗ = H0ẑ for r >> a, a = radius of sphere.

Guess solution with form

H   z

H   z

θ
a
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In exterior this is standard magnetostatics problem, with sphere of uniform
magnetization. Magnetostatic potential is dipolar:

ΦH =
4

3
πa3 M

cos θ

r2

H⃗ = H⃗0 − ∇⃗4

3
πa3 M

cos θ

r2
= H⃗0 +

4

3

πa3 M

r3
(2 cos θ r̂ + sin θ θ̂)

Require Hr|r=a = 0 B.C.

= H0 cos θ +
4π

3
M 2cos θ = 0

effective mag. “M”= 3
8πH0

H⃗ = H0

(
ẑ +

a3

2r3
(2cos θ r̂ + sin θ θ̂)

)
Component ∥ to surface is

Hθ|r=a = H0sin θ(1 +
1

2
) =

3

2
H0sin θ

(z = cos θ r̂, sin θ θ̂).
So when H0 = 2

3Hc, field at equator H(θ = π/2, r = a) = Hc ⇒ SC at
that point is supressed. Energetically favorable for part of sample near
equator to become normal:

3
2 H  < H < H0 c

excludedflux

(N.B. when H0 > Hc, excluding flux is no longer energetically favorable,
and solution above no longer applies).

Problem 4 - Density of states of p-wave superconductors.

1. Suppose that a superconductor is described by an order parameter whose
momentum dependence is ∆k = ∆0f(k̂), where f(k̂) is either sin θ (axial
state) or cos θ (polar state). Note the two f functions are ℓ = 1 spherical
harmonics or linear combinations thereof, so to satisfy the Pauli principle
these must represent spin triplet (S = 1) pair states. Nevertheless the
quasiparticle spectrum may be taken to be independent of spin, Ek =√
ξ2k +∆2

k.
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Use the fact that, for any given angle θ of k on the Fermi surface, the
quasiparticle excitations have the same form as that for an s-wave su-
perconductor, but with gap ∆(θ) to find an expression for the density of
states for the two types of order parameters.

In class we showed that the density of quasiparticle states of a super-
conductor is N(ω) = N0 Re ω/

√
ω2 −∆2. We are told this holds now

for each angle,

N(ω; θ) = N0 Re
ω√

ω2 −∆2(θ)

So for the total density of states, we need the two integrals

Ipol =

∫ π/2

0

dθ sin θ
ω√

ω2 −∆2
0 cos

2 θ
=

ω

∆0
cot−1

√
ω2 −∆2

0 polar

Iax =

∫ Π/2

0

dθ sin θ
ω√

ω2 −∆2
0 sin

2 θ
= ω log

√
ω +∆0

ω −∆0
axial,

The density of states is now just N0 ReI.

2. Plot as a function of ω the full frequency dependence of the density of
states in the two cases.
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Density of states N(ω)/N0 vs. ω for polar (top) and axial (bottom) p-wave

states. Note in both cases as ω → ∞ the functions approach 1, i.e. the normal

state DOS.

3. Estimate the low-ω asymptotic behavior in both cases.

3



Expanding the functions Iax,pol for small ω gives

Ipol ≃
ω

∆0

(
π/2 + i logω2/4∆2

0

)
Iax =

ω

∆0

(
ω

∆0
− i

π

2

)
so the desired asymptotic forms are Npol ≃ πω/(2∆0) and Nax ≃
ω2/∆2

0. These two power laws are reflected directly in the tempera-
ture dependence of the specific heat of the two states.

Problem 5: 1D Ising Model.

Consider a chain of N sites governed by the Hamiltonian

HI = J

N−1∑
i=1

Sz
i S

z
i+1. (1)

Consider a chain of N sites governed by the Hamiltonian

HI = J

N−1∑
i=1

Sz
i S

z
i+1. (2)

Show that the partition function is given by

Z =
∑

Sz
1=± 1

2

...
∑

Sz
N
=± 1

2

exp

(
−βJ

N−1∑
i=1

Sz
i S

z
i+1

)
= 2 (2 cosh[βJ/4])

N−1
(3)

Start from the end of the chain and show that∑
Sz
N
=± 1

2
exp

(
−βJSz

N−1S
z
N

)
= 2 cosh(βJ/4) independent of Sz

N−1.

Thus ZN = 2 cosh(βJ/4)ZN−1. Iterate the procedure, and remember to be
careful at the other end of the chain to get the result.

The thermodynamic limit is defined by N → ∞.

Partition function is

Z =
∑

Sz
1=±1/2

∑
Sz
2=±1/2

· · ·
∑

Sz
N
=±1/2

exp

[
−βJ

N−1∑
i=1

Sz
i S

z
i+1

]

=
∑

Sz
2=±1/2

· · ·
∑

Sz
N
=±1/2

(
eβ

J
2 Sz

2 + e−β J
2 Sz

2

)
e−βJSz

2S
z
3 · · · e−βJSz

N−1S
z
N

=
∑

Sz
3=±1/2

· · ·
∑

Sz
N
=±1/2

[
2 cosh(βJ/4)e−β J

2 Sz
3 + 2 cosh(βJ/4)eβ

J
2 Sz

3

]
e−βJSz

3S
z
4 · · · e−βJSz

N−1S
z
N

= [2 coshβJ/4]2
∑

Sz
4=±1/2

· · ·
∑

Sz
N
=±1/2

(
eβ

J
2 Sz

4 + e−β J
2 Sz

4

)
e−βJSz

4S
z
5 · · · e−βJSz

N−1S
z
N

...

= 2[2 coshβJ/4]N−1 (4)
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Show that in the thermodynamic limit the free energy is given by

F = −NkT ln(2 cosh(βJ/4)) (5)

F = −T lnZ = −T ln
[
2(2 cosh(βJ/4))N−1

]
= −T ln 2− T (N − 1) ln [2 cosh(βJ/4)]

= −T [(ln 2− ln(2 cosh(βJ/4)))]− TN ln [2 cosh(βJ/4)]

→N→∞ −TN ln [2 cosh(βJ/4)] (6)

Let us calculate the magnetization per site M = − 1
N

∂F
∂H |H=0. We’ll need

to include the coupling to the magnetic field. Thus we need to know the free
energy in the presence of a magnetic field H where

HI = J

N∑
i=1

Sz
i S

z
i+1 −H

N∑
i=1

Sz
i . (7)

For convenience we now sum from i = 1, ..., N assuming periodic boundary
conditions meaning that N + 1 = 1

Convince yourself that the partition function can be written as

Z =
∑

Sz
i
=± 1

2

N∏
i=1

exp

(
−β

[
JSz

i S
z
i+1 −

H

2
(Sz

i + Sz
i+1)

])
(8)

Consider the Ising chain with N sites in magnetic field H with boundary
conditions SN+1 = S1.

H = J

N∑
i=1

Sz
i S

z
i+1 +H

N∑
i=1

Sz
i

Z =
∑

Sz
1
=±1/2

∑
Sz
2
=±1/2

· · ·
∑

Sz
N

=±1/2

exp

[
−βJ

N−1∑
i=1

Sz
i S

z
i+1 − βJSz

NSz
1 −H

N∑
i=1

Sz
i

]

=
∑

Sz
1
=±1/2

· · ·
∑

Sz
N

=±1/2

exp [−βJ (Sz
1S

z
2 + Sz

2S
z
3 + ...Sz

NSz
1 )− βH (Sz

1 + Sz
2 + ...+ Sz

N )]

=
∑

Sz
1
=±1/2

· · ·
∑

Sz
N

=±1/2

exp (−βJSz
1S

z
2 − βHSz

1 ) exp (JS
z
2S

z
3 − βHSz

2 ) · · · exp (−βJSz
NSz

1 − βHSz
N )

=
∑

Sz
1
=±1/2

· · ·
∑

Sz
N

=±1/2

exp
(
−βJSz

1S
z
2 − β

H

2
(Sz

1 + Sz
2 )
)
· · · exp

(
−βJSz

NSz
1 − β

H

2
(Sz

N + Sz
1 )
)

=
∑

Sz
1
=±1/2

· · ·
∑

Sz
N

=±1/2

N∏
i=1

exp
(
−βJSz

i S
z
i+1 − β

H

2
(Sz

i + Sz
i+1)

)
(9)

This partition function can be rewritten in terms of a transfer matrix P
given by

P =

(
P11 P1−1

P−11 P−1−1

)
(10)
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where

P11 = exp(−β(J̃ + H̃)), (11)

P−1−1 = exp(−β(J̃ − H̃)), (12)

P1−1 = P−11 = exp(βJ̃), (13)

with J̃ = J/4 and H̃ = H/2.

Show that

Z = TrPN . (14)

First note, e.g. that 1 and -1 stand for spin up or down, so, e.g. ⟨↑ |P | ↑
⟩ = exp(−J/4 − H/2), which is just the first exponential factor in the framed
equation (8) above, for the term with both spins up. Check all the matrix
elements ↑↓, ↓↓, and ↓↑, to see that the expression derived above for Z is just

Z =
∑
Sz
1

· · ·
∑
Sz
N

⟨Sz
1 |P |Sz

2 ⟩⟨Sz
2 |P |Sz

3 ⟩ · · · ⟨Sz
N−1|P |Sz

N ⟩⟨Sz
N |P |Sz

1 ⟩ (15)

But each factor of
∑

Sz
i
|Sz

i ⟩⟨Sz
i | = 1, so one can remove all the intermediate

bras and kets except 1:

Z =
∑
Sz
1

⟨Sz
1 |P · P · · ·P |Sz

1 ⟩ =
∑
Sz
1

⟨Sz
1 |PN |Sz

1 ⟩ = TrPN (16)

The idea is now to use that the trace Tr is basis independent. Thus we can
diagonalise P and use this to obtain TrPN .

Find the eigenvalues λ1 and λ2 of P . Once you have them Z = TrPN =
λN
1 + λN

2 .

Find eigenvalues λ1 and λ2 of a 2D matrix:∣∣∣∣∣ e−β(J̃+H̃) − λ eβJ̃

eβJ̃ e−β(J̃−H̃) − λ

∣∣∣∣∣ = 0 (17)

Solve

0 = λ2 − 2e−βJ̃ cosh(βH̃)λ− 2 sinh 2βJ̃ (18)

(19)

λ± = e−βJ̃

[
cosh(βH̃)±

√
sinh2(βH̃) + e4βJ̃

]
(20)

The partition function is now given by the Tr of PN is now λN
+ + λN

− .

Use the fact that ln(λN
1 +λN

2 ) = N lnλ1+ln

(
1 +

[
λ2

λ1

]N)
to show that

in the thermodynamic limit

F = −NkT ln

[
e−βJ̃ coshβH̃ +

√
e−2βJ̃ sinh2 βH̃ + e2βJ̃

]
(21)
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F = −T lnZ = −T ln(λN
+ + λN

− )

= −TN lnλ+ − T ln

(
1 +

(
λ−

λ+

)N
)

(22)

Now note that λ−/λ+ < 1, so in the thermodynamic limit N → ∞, this van-
ishes.

F
→

N → ∞
− TN lnλ+ (23)

For H = 0 this result reduces to Eq. (5) as it should. Now we are finally
ready to obtain the magnetisation M(H̃) per site, i.e. M(H̃) = − 1

N
∂F
∂H̃

.

Show that

M(H̃) =
sinhβH̃√

sinh2 βH̃ + e4βJ̃
. (24)

M(H̃) =
∂F

∂βH̃
=

sinhβH̃√
sinh2 βH̃ + e4βJ̃

(25)

7


