Final Exam Solutions—Spring 2023

Problem 1

No "right answer”!.

Problem 2- one-phonon neutron scattering

Ashcroft-Mermin Problem 24-2 Allowed emitted phonon solutions follows from
Figure 24. 6 but taking w(k) — —w(k).
Problem 3 - Superconducting sphere

1. Outside sphere must have V- H= 0, VxH=0
Near surface, picture like this locally
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/

Since on these scales system is symmetric, H can only depend on z. There-
fore

0=V -H=V,H.,(2)+V,H,(2) = V. H,

So H, is at most a constant ind. of z everywhere. This implies VxH=0
inside sphere too = no currents flowing = trivial solution.

The above shows that we must have H || surface of sphere everywhere for
Meissner effect.

2. Look for soln. to V-H = 0, V x H = 0 outside sphere with BC. H|_,=
0, H= Hyz for r >> a, a = radius of sphere.

Guess solution with form

Hilz

A2



In exterior this is standard magnetostatics problem, with sphere of uniform
magnetization. Magnetostatic potential is dipolar:
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Component || to surface is

1
Hy|.__ = Hgsin6(1 + 5) = gHosme

T=a

(z = cos 07, sinb0).

So when Hy = 2H,, field at equator H(# = 7/2,r = a) = H, = SC at
that point is supressed. Energetically favorable for part of sample near
equator to become normal:

(N.B. when Hy > H,, excluding flux is no longer energetically favorable,
and solution above no longer applies).

Problem 4 - Density of states of p-wave superconductors.

1. Suppose that a superconductor is described by an order parameter whose
momentum dependence is Ay = Aqf(k), where f(k) is either sin 6 (axial
state) or cosf (polar state). Note the two f functions are ¢ = 1 spherical
harmonics or linear combinations thereof, so to satisfy the Pauli principle
these must represent spin triplet (S = 1) pair states. Nevertheless the
quasiparticle spectrum may be taken to be independent of spin, Fy =

VEE + AL




Use the fact that, for any given angle 6 of k on the Fermi surface, the
quasiparticle excitations have the same form as that for an s-wave su-
perconductor, but with gap A(#) to find an expression for the density of
states for the two types of order parameters.

In class we showed that the density of quasiparticle states of a super-
conductor is N(w) = Ny Re w/vw? — A2, We are told this holds now
for each angle,

N(w:0) = Ny Re —
2 — A2(0)

So for the total density of states, we need the two integrals
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The density of states is now just Ny Rel.

w+A0
w—AO

= wlog axial,

2. Plot as a function of w the full frequency dependence of the density of
states in the two cases.
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Density of states N(w)/No vs. w for polar (top) and axial (bottom) p-wave
states. Note in both cases as w — oo the functions approach 1, i.e. the normal
state DOS.

3. Estimate the low-w asymptotic behavior in both cases.




Expanding the functions I, po; for small w gives

Lo = Ai (7/2 + ilogw?/4Af)
0

oW (w _ ﬂ)
A \Ag 2

so the desired asymptotic forms are Np, ~ 7w/(2A¢) and Ny, =~
w?/A2. These two power laws are reflected directly in the tempera-
ture dependence of the specific heat of the two states.

Problem 5: 1D Ising Model.

Consider a chain of N sites governed by the Hamiltonian

N—-1
Hy=J)Y SiSi. (1)
=1

Consider a chain of N sites governed by the Hamiltonian

N-1
Hp=J Z S8 (2)
i=1

Show that the partition function is given by

N—-1
2= 2 e 2 e (‘WZSf f+1> = 2(2cosh[8J/4)" 7 (3)
s i=1

f=kb si—t}
Start from the end of  the chain and show that
ng:i% exp (—BJS%_15%) = 2cosh(BJ/4) independent of S%_;.

Thus Zy = 2cosh(8.J/4)Zn—_1. Iterate the procedure, and remember to be
careful at the other end of the chain to get the result.

The thermodynamic limit is defined by N — oo.

Partition function is
N-1
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Show that in the thermodynamic limit the free energy is given by

F = —NET In(2 cosh(BJ/4)) (5)

F = ~TInZ=—T1n[2(2cosh(3J/4))N ]
= —Tln2—-T(N —1)In[2cosh(8J/4)]
= —T'[(In2 — In(2 cosh(BJ/4)))] — TN In [2 cosh(8J/4)]
—Nooo —I'NIn[2cosh(8J/4)] (6)

Let us calculate the magnetization per site M = *%%M:O- We'll need
to include the coupling to the magnetic field. Thus we need to know the free

energy in the presence of a magnetic field H where

N N
Hy=JY S;Si,—HY S;. (7)
=1 =1

For convenience we now sum from ¢ = 1,..., N assuming periodic boundary
conditions meaning that N +1 =1

Convince yourself that the partition function can be written as

Z= > l:lexp (—ﬁ [JSf - g(s,f + f+1)D (8)

Consider the Ising chain with N sites in magnetic field H with boundary
conditions Sy = S1.
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This partition function can be rewritten in terms of a transfer matriz P
given by

Py Pi
P = 10
( Poyi Poi ) (10)



where
Py =exp(—8(J+H
Py =exp(—B(J - H
Py = P_y1 =exp(BJ), (13)
with J = J/4 and H = H/2.

Show that
Z =TrPV. (14)

First note, e.g. that 1 and -1 stand for spin up or down, so, e.g. (1 |P| T
) = exp(—J/4 — H/2), which is just the first exponential factor in the framed
equation (8) above, for the term with both spins up. Check all the matrix
elements 1, |}, and |1, to see that the expression derived above for Z is just

Z=3 D (STIPISI)(S5IPISS) -+ (Sk1[PISR)(SKIPIST)  (15)
S S%
But each factor of } . [S7)(S7| = 1, so one can remove all the intermediate

bras and kets except 1:

Z=7 (S|P P---P|S]) = (S7|PN|ST) = TePY (16)
57 57

The idea is now to use that the trace Tr is basis independent. Thus we can
diagonalise P and use this to obtain TrPY.

Find the eigenvalues A\; and Ay of P. Once you have them Z = TrPN =
AN 4+ 2.

Find eigenvalues A1 and Ay of a 2D matrix:

—B(J+H J
e ﬁ(JeJ;j) - 675(.7({31;) . —0 (17)
Solve
0 = A2 —2¢ 57 cosh(BH)\ — 2sinh 23] (18)
(19)
Ay = e B {cosh(ﬁﬁ) + \/sinh?(BH) + e4ﬁj} (20)

The partition function is now given by the Tr of PV is now )\f + AN,

1

N
Use the fact that In(AY +A\)) = NIn\; +1In (1 + {’\—2} ) to show that

in the thermodynamic limit

F =—NkT'n |e?7 cosh BH + \/e—mj sinh? BH + ezﬂj} (21)




F = —ThZ=-Thh\Y +\Y)

~TNInA, —Tln (1 + <t>N> (22)

Now note that A_/A; < 1, so in the thermodynamic limit N — oo, this van-
ishes.

%
Fo o —TNhy (23)

For H = 0 this result reduces to Eq. (5) as it should. Now we are finally

ready to obtain the magnetisation M(H) per site, i.e. M(H) = —% gg.
Show that
- inh BH
M(H) = i ? . (24)
\/sinh? BH + 487
~ OF sinh BH
M(H) = = (25)

opH \/sinh? BH + 487




