Final Exam Solutions-Spring 2023

Problem 1

No "right answer"!.

Problem 2- one-phonon neutron scattering

Ashcroft-Mermin Problem 24-2 Allowed emitted phonon solutions follows from Figure 24. 6 but taking $\omega(\mathbf{k}) \rightarrow-\omega(\mathbf{k})$.

Problem 3-Superconducting sphere

1. Outside sphere must have $\vec{\nabla} \cdot \vec{H}=0, \vec{\nabla} \times \vec{H}=0$ Near surface, picture like this locally

Since on these scales system is symmetric, \vec{H} can only depend on z. Therefore

$$
0=\vec{\nabla} \cdot \vec{H}=\nabla_{z} H_{z}(z)+\nabla_{x} H_{x}(z)=\nabla_{z} H_{z}
$$

So H_{z} is at most a constant ind. of z everywhere. This implies $\vec{\nabla} \times \vec{H}=0$ inside sphere too \Rightarrow no currents flowing \Rightarrow trivial solution.
The above shows that we must have $\vec{H} \|$ surface of sphere everywhere for Meissner effect.
2. Look for soln. to $\vec{\nabla} \cdot \vec{H}=0, \vec{\nabla} \times \vec{H}=0$ outside sphere with BC. $\left.H_{\perp}\right|_{r=a}=$ $0, \vec{H}=H_{0} \hat{z}$ for $r \gg a, a=$ radius of sphere.
Guess solution with form

In exterior this is standard magnetostatics problem, with sphere of uniform magnetization. Magnetostatic potential is dipolar:

$$
\begin{gathered}
\Phi_{H}=\frac{4}{3} \pi a^{3} M \frac{\cos \theta}{r^{2}} \\
\vec{H}=\vec{H}_{0}-\vec{\nabla} \frac{4}{3} \pi a^{3} M \frac{\cos \theta}{r^{2}}=\vec{H}_{0}+\frac{4}{3} \frac{\pi a^{3} M}{r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta})
\end{gathered}
$$

Require $\left.H_{r}\right|_{r=a}=0$ B.C.

$$
=H_{0} \cos \theta+\frac{4 \pi}{3} M 2 \cos \theta=0
$$

effective mag. "M" $=\frac{3}{8 \pi} H_{0}$

$$
\vec{H}=H_{0}\left(\hat{z}+\frac{a^{3}}{2 r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta})\right)
$$

Component || to surface is

$$
\left.H_{\theta}\right|_{r=a}=H_{0} \sin \theta\left(1+\frac{1}{2}\right)=\frac{3}{2} H_{0} \sin \theta
$$

$(z=\cos \theta \hat{r}, \sin \theta \hat{\theta})$.
So when $H_{0}=\frac{2}{3} H_{c}$, field at equator $H(\theta=\pi / 2, r=a)=H_{c} \Rightarrow \mathrm{SC}$ at that point is supressed. Energetically favorable for part of sample near equator to become normal:

(N.B. when $H_{0}>H_{c}$, excluding flux is no longer energetically favorable, and solution above no longer applies).

Problem 4-Density of states of p-wave superconductors.

1. Suppose that a superconductor is described by an order parameter whose momentum dependence is $\Delta_{\mathbf{k}}=\Delta_{0} f(\hat{k})$, where $f(\hat{k})$ is either $\sin \theta$ (axial state) or $\cos \theta$ (polar state). Note the two f functions are $\ell=1$ spherical harmonics or linear combinations thereof, so to satisfy the Pauli principle these must represent spin triplet $(S=1)$ pair states. Nevertheless the quasiparticle spectrum may be taken to be independent of spin, $E_{\mathbf{k}}=$ $\sqrt{\xi_{\mathbf{k}}^{2}+\Delta_{\mathbf{k}}^{2}}$.

Use the fact that, for any given angle θ of \mathbf{k} on the Fermi surface, the quasiparticle excitations have the same form as that for an s-wave superconductor, but with gap $\Delta(\theta)$ to find an expression for the density of states for the two types of order parameters.

In class we showed that the density of quasiparticle states of a superconductor is $N(\omega)=N_{0} \operatorname{Re} \omega / \sqrt{\omega^{2}-\Delta^{2}}$. We are told this holds now for each angle,

$$
N(\omega ; \theta)=N_{0} \operatorname{Re} \frac{\omega}{\sqrt{\omega^{2}-\Delta^{2}(\theta)}}
$$

So for the total density of states, we need the two integrals

$$
\begin{array}{r}
I_{p o l}=\int_{0}^{\pi / 2} d \theta \sin \theta \frac{\omega}{\sqrt{\omega^{2}-\Delta_{0}^{2} \cos ^{2} \theta}}=\frac{\omega}{\Delta_{0}} \cot ^{-1} \sqrt{\omega^{2}-\Delta_{0}^{2}} \\
I_{a x}=\int_{0}^{\Pi / 2} d \theta \sin \theta \frac{\omega}{\sqrt{\omega^{2}-\Delta_{0}^{2} \sin ^{2} \theta}}=\omega \log \sqrt{\frac{\omega+\Delta_{0}}{\omega-\Delta_{0}}}
\end{array}
$$

polar
axial,

The density of states is now just $N_{0} \operatorname{Re} I$.
2. Plot as a function of ω the full frequency dependence of the density of states in the two cases.

Density of states $N(\omega) / N_{0}$ vs. ω for polar (top) and axial (bottom) p-wave states. Note in both cases as $\omega \rightarrow \infty$ the functions approach 1, i.e. the normal state DOS.
3. Estimate the low- ω asymptotic behavior in both cases.

Expanding the functions $I_{a x, p o l}$ for small ω gives

$$
\begin{array}{r}
I_{p o l} \simeq \frac{\omega}{\Delta_{0}}\left(\pi / 2+i \log \omega^{2} / 4 \Delta_{0}^{2}\right) \\
I_{a x}=\frac{\omega}{\Delta_{0}}\left(\frac{\omega}{\Delta_{0}}-i \frac{\pi}{2}\right)
\end{array}
$$

so the desired asymptotic forms are $N_{p o l} \simeq \pi \omega /\left(2 \Delta_{0}\right)$ and $N_{a x} \simeq$ $\omega^{2} / \Delta_{0}^{2}$. These two power laws are reflected directly in the temperature dependence of the specific heat of the two states.

Problem 5: 1D Ising Model.

Consider a chain of N sites governed by the Hamiltonian

$$
\begin{equation*}
H_{I}=J \sum_{i=1}^{N-1} S_{i}^{z} S_{i+1}^{z} \tag{1}
\end{equation*}
$$

Consider a chain of N sites governed by the Hamiltonian

$$
\begin{equation*}
H_{I}=J \sum_{i=1}^{N-1} S_{i}^{z} S_{i+1}^{z} \tag{2}
\end{equation*}
$$

Show that the partition function is given by

$$
Z=\sum_{S_{1}^{z= \pm \frac{1}{2}}} \ldots \sum_{S_{N}^{z}= \pm \frac{1}{2}} \exp \left(-\beta J \sum_{i=1}^{N-1} S_{i}^{z} S_{i+1}^{z}\right)=2(2 \cosh [\beta J / 4])^{N-1}(3)
$$

Start from the end of the chain and show that $\sum_{S_{N}^{z}= \pm \frac{1}{2}} \exp \left(-\beta J S_{N-1}^{z} S_{N}^{z}\right)=2 \cosh (\beta J / 4)$ independent of S_{N-1}^{z}. Thus $Z_{N}=2 \cosh (\beta J / 4) Z_{N-1}$. Iterate the procedure, and remember to be careful at the other end of the chain to get the result.

The thermodynamic limit is defined by $N \rightarrow \infty$.
Partition function is

$$
\begin{align*}
Z & =\sum_{S_{1}^{z}= \pm 1 / 2} \sum_{S_{2}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2} \exp \left[-\beta J \sum_{i=1}^{N-1} S_{i}^{z} S_{i+1}^{z}\right] \\
& =\sum_{S_{2}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2}\left(e^{\beta \frac{J}{2} S_{2}^{z}}+e^{-\beta \frac{J}{2} S_{2}^{z}}\right) e^{-\beta J S_{2}^{z} S_{3}^{z}} \cdots e^{-\beta J S_{N-1}^{z} S_{N}^{z}} \\
& =\sum_{S_{3}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2}\left[2 \cosh (\beta J / 4) e^{-\beta \frac{J}{2} S_{3}^{z}}+2 \cosh (\beta J / 4) e^{\beta \frac{J}{2} S_{3}^{z}}\right] e^{-\beta J S_{3}^{z} S_{4}^{z}} \cdots e^{-\beta J S_{N-1}^{z} S_{N}^{z}} \\
& =[2 \cosh \beta J / 4]^{2} \sum_{S_{4}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2}\left(e^{\beta \frac{J}{2} S_{4}^{z}}+e^{-\beta \frac{J}{2} S_{4}^{z}}\right) e^{-\beta J S_{4}^{z} S_{5}^{z}} \cdots e^{-\beta J S_{N-1}^{z} S_{N}^{z}} \\
& \vdots \\
& =2[2 \cosh \beta J / 4]^{N-1} \tag{4}
\end{align*}
$$

Show that in the thermodynamic limit the free energy is given by

$$
\begin{equation*}
F=-N k T \ln (2 \cosh (\beta J / 4)) \tag{5}
\end{equation*}
$$

$$
\begin{array}{rll}
F & = & -T \ln Z=-T \ln \left[2(2 \cosh (\beta J / 4))^{N-1}\right] \\
& =-T \ln 2-T(N-1) \ln [2 \cosh (\beta J / 4)] \\
& = & -T[(\ln 2-\ln (2 \cosh (\beta J / 4)))]-T N \ln [2 \cosh (\beta J / 4)] \\
\rightarrow_{N \rightarrow \infty} & & -T N \ln [2 \cosh (\beta J / 4)] \tag{6}
\end{array}
$$

Let us calculate the magnetization per site $M=-\left.\frac{1}{N} \frac{\partial F}{\partial H}\right|_{H=0}$. We'll need to include the coupling to the magnetic field. Thus we need to know the free energy in the presence of a magnetic field H where

$$
\begin{equation*}
H_{I}=J \sum_{i=1}^{N} S_{i}^{z} S_{i+1}^{z}-H \sum_{i=1}^{N} S_{i}^{z} \tag{7}
\end{equation*}
$$

For convenience we now sum from $i=1, \ldots, N$ assuming periodic boundary conditions meaning that $N+1=1$

Convince yourself that the partition function can be written as

$$
\begin{equation*}
Z=\sum_{S_{i}^{z}= \pm \frac{1}{2}} \prod_{i=1}^{N} \exp \left(-\beta\left[J S_{i}^{z} S_{i+1}^{z}-\frac{H}{2}\left(S_{i}^{z}+S_{i+1}^{z}\right)\right]\right) \tag{8}
\end{equation*}
$$

Consider the Ising chain with N sites in magnetic field H with boundary conditions $S_{N+1}=S_{1}$.

$$
\begin{align*}
\mathcal{H} & =J \sum_{i=1}^{N} S_{i}^{z} S_{i+1}^{z}+H \sum_{i=1}^{N} S_{i}^{z} \\
Z & =\sum_{S_{1}^{z}= \pm 1 / 2} \sum_{S_{2}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2} \exp \left[-\beta J \sum_{i=1}^{N-1} S_{i}^{z} S_{i+1}^{z}-\beta J S_{N}^{z} S_{1}^{z}-H \sum_{i=1}^{N} S_{i}^{z}\right] \\
& =\sum_{S_{1}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2} \exp \left[-\beta J\left(S_{1}^{z} S_{2}^{z}+S_{2}^{z} S_{3}^{z}+\ldots S_{N}^{z} S_{1}^{z}\right)-\beta H\left(S_{1}^{z}+S_{2}^{z}+\ldots+S_{N}^{z}\right)\right] \\
& =\sum_{S_{1}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2} \exp \left(-\beta J S_{1}^{z} S_{2}^{z}-\beta H S_{1}^{z}\right) \exp \left(J S_{2}^{z} S_{3}^{z}-\beta H S_{2}^{z}\right) \cdots \exp \left(-\beta J S_{N}^{z} S_{1}^{z}-\beta H S_{N}^{z}\right) \\
& =\sum_{S_{1}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2} \exp \left(-\beta J S_{1}^{z} S_{2}^{z}-\beta \frac{H}{2}\left(S_{1}^{z}+S_{2}^{z}\right)\right) \cdots \exp \left(-\beta J S_{N}^{z} S_{1}^{z}-\beta \frac{H}{2}\left(S_{N}^{z}+S_{1}^{z}\right)\right) \\
& =\sum_{S_{1}^{z}= \pm 1 / 2} \cdots \sum_{S_{N}^{z}= \pm 1 / 2} \prod_{i=1}^{N} \exp \left(-\beta J S_{i}^{z} S_{i+1}^{z}-\beta \frac{H}{2}\left(S_{i}^{z}+S_{i+1}^{z}\right)\right) \tag{9}
\end{align*}
$$

This partition function can be rewritten in terms of a transfer matrix P given by

$$
P=\left(\begin{array}{cc}
\mathrm{P}_{11} & \mathrm{P}_{1-1} \tag{10}\\
\mathrm{P}_{-11} & \mathrm{P}_{-1-1}
\end{array}\right)
$$

where

$$
\begin{array}{r}
P_{11}=\exp (-\beta(\tilde{J}+\tilde{H})) \\
P_{-1-1}=\exp (-\beta(\tilde{J}-\tilde{H})) \\
P_{1-1}=P_{-11}=\exp (\beta \tilde{J}) \tag{13}
\end{array}
$$

with $\tilde{J}=J / 4$ and $\tilde{H}=H / 2$.

Show that

$$
\begin{equation*}
Z=\operatorname{Tr} P^{N} \tag{14}
\end{equation*}
$$

First note, e.g. that 1 and -1 stand for spin up or down, so, e.g. $\langle\uparrow| P \mid \uparrow$ $\rangle=\exp (-J / 4-H / 2)$, which is just the first exponential factor in the framed equation (8) above, for the term with both spins up. Check all the matrix elements $\uparrow \downarrow, \downarrow \downarrow$, and $\downarrow \uparrow$, to see that the expression derived above for Z is just

$$
\begin{equation*}
Z=\sum_{S_{1}^{z}} \cdots \sum_{S_{N}^{z}}\left\langle S_{1}^{z}\right| P\left|S_{2}^{z}\right\rangle\left\langle S_{2}^{z}\right| P\left|S_{3}^{z}\right\rangle \cdots\left\langle S_{N-1}^{z}\right| P\left|S_{N}^{z}\right\rangle\left\langle S_{N}^{z}\right| P\left|S_{1}^{z}\right\rangle \tag{15}
\end{equation*}
$$

But each factor of $\sum_{S_{i}^{z}}\left|S_{i}^{z}\right\rangle\left\langle S_{i}^{z}\right|=1$, so one can remove all the intermediate bras and kets except 1 :

$$
\begin{equation*}
Z=\sum_{S_{1}^{z}}\left\langle S_{1}^{z}\right| P \cdot P \cdots P\left|S_{1}^{z}\right\rangle=\sum_{S_{1}^{z}}\left\langle S_{1}^{z}\right| P^{N}\left|S_{1}^{z}\right\rangle=\operatorname{Tr} P^{N} \tag{16}
\end{equation*}
$$

The idea is now to use that the trace Tr is basis independent. Thus we can diagonalise P and use this to obtain $\operatorname{Tr} P^{N}$.

Find the eigenvalues λ_{1} and λ_{2} of P. Once you have them $Z=\operatorname{Tr} P^{N}=$ $\lambda_{1}^{N}+\lambda_{2}^{N}$.

Find eigenvalues λ_{1} and λ_{2} of a 2D matrix:

$$
\left|\begin{array}{cc}
e^{-\beta(\tilde{J}+\tilde{H})}-\lambda & e^{\beta \tilde{J}} \tag{17}\\
e^{\beta \tilde{J}} & e^{-\beta(\tilde{J}-\tilde{H})}-\lambda
\end{array}\right|=0
$$

Solve

$$
\begin{align*}
0 & =\lambda^{2}-2 e^{-\beta \tilde{J}} \cosh (\beta \tilde{H}) \lambda-2 \sinh 2 \beta \tilde{J} \tag{18}\\
\lambda_{ \pm} & =e^{-\beta \tilde{J}}\left[\cosh (\beta \tilde{H}) \pm \sqrt{\sinh ^{2}(\beta \tilde{H})+e^{4 \beta \tilde{J}}}\right] \tag{19}
\end{align*}
$$

The partition function is now given by the Tr of P^{N} is now $\lambda_{+}^{N}+\lambda_{-}^{N}$.

Use the fact that $\ln \left(\lambda_{1}^{N}+\lambda_{2}^{N}\right)=N \ln \lambda_{1}+\ln \left(1+\left[\frac{\lambda_{2}}{\lambda_{1}}\right]^{N}\right)$ to show that in the thermodynamic limit

$$
\begin{equation*}
F=-N k T \ln \left[e^{-\beta \tilde{J}} \cosh \beta \tilde{H}+\sqrt{e^{-2 \beta \tilde{J}} \sinh ^{2} \beta \tilde{H}+e^{2 \beta \tilde{J}}}\right] \tag{21}
\end{equation*}
$$

$$
\begin{align*}
F & =-T \ln Z=-T \ln \left(\lambda_{+}^{N}+\lambda_{-}^{N}\right) \\
& =-T N \ln \lambda_{+}-T \ln \left(1+\left(\frac{\lambda_{-}}{\lambda_{+}}\right)^{N}\right) \tag{22}
\end{align*}
$$

Now note that $\lambda_{-} / \lambda_{+}<1$, so in the thermodynamic limit $N \rightarrow \infty$, this vanishes.

$$
\begin{equation*}
F_{N \rightarrow \infty}-T N \ln \lambda_{+} \tag{23}
\end{equation*}
$$

For $H=0$ this result reduces to Eq. (5) as it should. Now we are finally ready to obtain the magnetisation $M(\tilde{H})$ per site, i.e. $M(\tilde{H})=-\frac{1}{N} \frac{\partial F}{\partial \tilde{H}}$.

Show that

$$
\begin{equation*}
M(\tilde{H})=\frac{\sinh \beta \tilde{H}}{\sqrt{\sinh ^{2} \beta \tilde{H}+e^{4 \beta \tilde{J}}}} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
M(\tilde{H})=\frac{\partial F}{\partial \beta \tilde{H}}=\frac{\sinh \beta \tilde{H}}{\sqrt{\sinh ^{2} \beta \tilde{H}+e^{4 \beta \tilde{J}}}} \tag{25}
\end{equation*}
$$

