PHZ7427–Solid State II Spring 2023 Midterm (take-home) Mar. 13, 2023

Due Monday, Mar. 27. Attempt all problems below, by yourself. Use of books and other course materials is allowed.

- 1. "Short" answer (please write enough to convince me you understand what is going on). Note in some cases I did not explicitly cover the material in class, but information is contained in the class notes, and elsewhere.
 - (a) Explain how neutron scattering can be used to *detect* and *characterize* a magnetic state in a solid. Discuss both diffraction and inelastic scattering.
 - (b) What is a spontaneously broken symmetry of a statistical system? *Explain* two different examples of systems which exhibit such symmetry breaking.
 - (c) Give a definition of the plasma frequency of a simple metal, and describe how you would go about determining it with an optics experiment.
 - (d) In the elementary theory of solids, systems with one electron per atomic site are metals. Under what circumstances can such a system be an insulator?
 - (e) A charged impurity placed in a semiconductor will influence electrons moving 10 nm away, whereas the same impurity in a metal (assume same charge on the impurity) will only influence electrons over a distance of 0.1 nm or less. Explain.
 - (f) Write down a valid single quantized wave function for 3 electrons at positions \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 in the three distinct single-particle states $\phi_a(\mathbf{r})$, $\phi_b(\mathbf{r})$, $\phi_c(\mathbf{r})$. Note the a, b, c label *includes* spin. Now express the same wave function in 2nd quantized notation.
 - (g) Name one property of a typical solid which cannot be explained using the quantum theory of a harmonic lattice. Explain briefly.
- 2. Friedel oscillations. Note the *real* part of the Lindhard function $\operatorname{Re}L(q, 0)$ is given in A& M 17.58. Make a plot of this function vs. qv_F/ε_F using Mathematica, etc. for T = 0. Now make a simple model; your sketch should look a bit like

$$L(q,0) \simeq \begin{cases} 1 & q < 2k_F \\ 0 & q > 2k_F \end{cases}$$
(1)

when suitably normalized. Find the asymptotic $(r \to \infty)$ behavior of the electrostatic potential $\phi(\mathbf{r})$ around the impurity using this model form. Compare to the result 17.59 in Ashcroft & Mermin. What is the difference?

3. Spin-boson transformations.

(a) Show that the Holstein-Primakoff representation of spin operators in terms of bosons a^{\dagger} , a, satisfies the usual spin algebra (commutation relations):

$$S^{-} = (2S)^{1/2} a^{\dagger} \sqrt{1 - \frac{a^{\dagger} a}{2S}}$$

$$S^{+} = (2S)^{1/2} \sqrt{1 - \frac{a^{\dagger} a}{2S}} a$$

$$s^{z} = (S - a^{\dagger} a)$$
(2)

(b) Show that the Dyson-Maleev representation of spin operators in terms of bosons a^{\dagger} , a, satisfies the usual spin algebra (commutation relations):

$$S^{-} = (2S)^{1/2} a^{\dagger} \left(1 - \frac{a^{\dagger} a}{2S} \right)$$

$$S^{+} = (2S)^{1/2} a$$

$$s^{z} = (S - a^{\dagger} a)$$
(3)

- 4. Specific heat due to spin waves. Calculate the low temperature specific heat of a ferromagnet described by the spin-1/2 Heisenberg model within linear spin wave theory. Show that the leading asymptotic temperature dependence is $C \sim AT^{\alpha}$, find A and α in terms of J and the lattice constant a.
- 5. **1D Anisotropic Exchange.** Take a Heisenberg-type model in one dimension with nearest-neighbor only interactions:

$$H = -\sum_{i} \left[J_z S_i^z S_{i+1}^z + \frac{1}{2} J_\perp \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ \right) \right]$$
(4)

- (a) Show that for $J_z > J_{\perp}$ the magnon dispersion $E(\mathbf{q})$ is similar to the isotropic case, but with nonzero energy as $q \to 0$.
- (b) Show for the opposite case $J_z < J_{\perp}$ the ferromagnetically ordered state with magnetization along z is not the ground state!