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PHZ7428–Modern Condensed Matter Physics

Spring 2019

Take-home final examination

April 19, 2019

Due: April 26, 2019

1-week take-home exam containing three separate problems. The problems should be worked out alone and
may not be discussed, in specifics, with others.

Problem 1

In the following, we shall consider a one dimensional chain having N sites and mobile electrons which we model by
a simple tight-binding model:

H0 =
∑
k,σ

ξkc
†
kσckσ, (1)

with dispersion-relation

ξk = −2t cos(ak), for k ∈ [−π/a, π/a], (2)

where t denotes the nearest-neighbor hopping amplitude (in dimensions of energy), k is the wave-vector along the
chain and a is the lattice constant. We consider the half-filled band and hence take the chemical potential to be zero.

a:

Sketch the dispersion relation (ξk vs. k) and indicate the Fermi level. Show that the density of states, i.e.
N(ω) =

∑
k δ(ω − ξk), is given by

N(ω) =
N

π
(4t2 − ω2)−1/2θ(2t− |ω|). (3)

(hint: remember that δ(f(x)) =
∑
x0
δ(x− x0)/|f ′(x0)|, where x0 are the zeros of f(x)).

b:

Assuming that T � t, show that the retarded electronic polarization bubble (cf. Fig.1a) in the static limit
and at wave-vector 2kF , i.e. Π(0)R(q, ω) for ω = 0 and q = 2kF , is given by:

Π(0)R(2kF , 0) =
N

πt
ln

(
4teγ

πT

)
, (4)

and thus diverges as T → 0. Along the way, you may want to make use of the following integral:

α

∫ α

0

dx
tanh(x)

x
√
α2 − x2

≈ ln(α) + ln(4eγ/π), forα� 1. (5)

where γ = 0.577... is Eulers constant.

c:

The harmonic vibrations of the underlying ion-lattice can be described by the following (retarded) free phonon
Green’s function:

D(0)R(q, ω) =
2ωq

(ω + i0+)2 − ω2
q

. (6)
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FIG. 1: Feynman diagrams corresponding to respectively: a) the electron polarization bubble Π(0)R (dots merely denote the
beginning and ending of Greens functions), b) the electron-phonon interaction vertex, here denoted by a black square and
corresponding to a factor of gel−ph, and c) the Dyson equation for the renormalized phonon Green’s function, taking the
polarization bubble as the irreducible phonon self-energy.

Within the so-called Debye model, the energy of an acoustic phonon as a function of its wave-vector is given by the
dispersion-relation ωq = vD|q|. This phonon mode interacts with the electron system via the vertex shown in Fig.1b,
corresponding to the coupling constant

gel−ph =

(
λ

ωq
2N(0)

)1/2

, (7)

N(0) being the density of states at the Fermi level. The dressed phonon Green’s function can be found from the
following Dyson equation for the retarded Green’s function (cf. Fig.1c)

DR(q, ω) = D(0)R(q, ω)−D(0)R(q, ω)gel−phΠ(0)R(q, ω)gel−phDR(q, ω), (8)

which is quite an accurate approximation for q ≈ 2kF and ω ≈ 0, when T � t. (Note: the minus in this Dyson
equation comes from particular Feynman rules for phonon propagators which you are not expected to know).

Solve this Dyson equation for the renormalized phonon Green’s function, DR(q, ω), and find the renormalized
phonon dispersion-relation ω̃q for q ≈ 2kF . You may neglect the (q, ω)-dependence of the polarization bubble and use

the constant value for Π(0)R found above for (q, ω) = (2kF , 0).

d:

Show that for q ≈ 2kF this renormalized dispersion relation, ω̃q, vanishes identically when decreasing the tempera-
ture to some critical value TC , where

TC =
4t

π
eγe−1/(2λ). (9)

For T < TC , this ω̃q (near q ≈ 2kF ) becomes imaginary and hence physically meaningless. Approaching TC from
above, ω̃q vanishes as a power-law very close to TC . Expand ω̃q in (T − TC)/TC � 1 and find the exponent ν for the
transition to ω̃q = 0, i.e. the exponent in the relation:

ω̃q ∝ |T − TC |ν , forT >∼ TC . (10)

This demonstrates an instability of one-dimensional electron systems due to
a spontaneous deformation of the ion-lattice, here signalled by a soft mode in
the phonon spectrum. For T < TC , it costs no energy to excite a phonon,
and the phonon-system is therefore unstable towards a spontaneous deforma-
tion involving two different lattice-spacings. This was first demonstrated (in a
different manner!) by Rudolf Peierls (1907-1995) in 1930.
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Problem 2

In this problem we remain focussed on electrons in two dimensions (2D). The study of 2D electron gases is relevant
for a large field of active research since they can be realized in so-called GaAs heterostructures. The physics of 2D
electrons is surprisingly rich and includes e.g. the fractional quantum Hall effect which was the subject of a Nobel
prize in 1998. Below, you will study the electron-electron interactions in 2D, and derive the associated screening and
plasmons properties. Throughout this problem we take h̄ = 1.

a:

The Hamiltonian which we study is

H =
∑
kσ

ξkc
†
kσckσ +

1

2A
∑
kk′q

∑
σσ′

W 2D(q)c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ, (11)

where A is the area of our sample, ξk = k2

2m − µ, the usual quadratic dispersion of free electrons. By Fourier

transforming the real-space potential W (r1 − r2) = 1
4πεrε0

e2

|r1−r2| , show that

W 2D(q) =
e2

2εrε0q
. (12)

You may want to use that
∫ 2π

0
dθ exp(iα cos θ) = 2πJ0(α) and

∫∞
0
dxJ0(bx) = 1/b, where J0 is the zero’th order Bessel

function of the first kind.

b:

Within RPA, the dielectric function ε2DRPA(q, iqn) is given by

ε2DRPA(q, iqn) = 1−W 2D(q)χ2D
0 (q, iqn), (13)

with

χ2D
0 (q, iqn) = 2

∫
d2k

(2π)2
nF (ξk+q)− nF (ξk)

ξk+q − ξk − iqn
. (14)

Explain how one can derive this expression for χ2D
0 (q, iqn).

c:

Write down the renormalized Coulomb interaction WRPA(q, iqn), and derive an expression for the static
Thomas-Fermi screening wavenumber k2Ds in terms of physical parameters of the electron gas. Using that for
GaAs: εr = 13, m = 0.067me (me is the bare electron mass), how does k2Ds compare to kF when the density is
n = 2× 1015m−2.

d:

For kBT/εF � 1 and q � kF , show that

Reχ2D
0 (q, ω) =

1

2π2

kF
h̄vF

∫ 2π

0

dθ
vF q cos θ

ω − vF q cos θ
. (15)

e:
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Using Eq. (15) in the long wavelength limit q � ω/vF , show that the 2D plasmon dispersion ω(q) is given
by

ω(q) = vF

√
k2Ds q

2
. (16)

What is the crucial difference compared to the 3D case? Given that visible light corresponds to the q → 0 limit, argue
whether a 2D electron gas appears reflective or transparent to the human eye.

f:

Where is the particle-hole continuum in 2D? Sketch the analog of Fig. 14.2 from Bruus & Flensberg. What
is the condition that the plasmons are not damped by particle-hole excitations in the small q limit? Are plasmons
damped in GaAs in this limit?

Problem 3

In the following problem, we consider a single impurity atom on the surface of a metal. The atom is arranged such
that a single atomic orbital, henceforth labeled by subscript d, hybridizes with the conduction-electrons in the metal.
This system can be probed by a scanning tunneling microscope (STM) and the question is what one should expect for
the tunneling current when the STM-tip is brought in close to the metal a certain distance away from the impurity
atom.

As a simple model for this physical system, we shall approximate the metal-surface by a two-dimensional electron-gas

having a simple quadratic dispersion ξk = k2

2m − µ, where µ denotes the electron chemical potential. The impurity-
atom is modeled by a single resonant level with momentum-independent hybridization, t, to the metal at the position
r = (x, y) = (0, 0). Throughout this problem we shall take h̄ = 1 and for simplicity we shall omit the spin of the
electrons. The area of the electron-gas we denote by A.

a:

Argue how the Hamiltonian,

H =
∑
k

ξkc
†
kck + εdc

†
dcd +

1√
A

∑
k

(
t∗c†kcd + tc†dck

)
(17)

reflects this model, i.e. what is the physical content of the individual terms? Argue why H includes merely a 
hybridization with conduction-electrons at position r = (0, 0). Make a simple drawing sketching the system. Finally, 
list a few additional terms and complications which one might have added to this Hamiltonian in order to make it 
more realistic.

b:

Assuming that the STM-tip probes the conduction-electron system at a position r, relative to the location 
of the impurity atom, we need to calculate the retarded Green function describing the propagation from r to r:

GR(r, r;ω) = −iθ(t− t′)〈{ψ(r, t), ψ†(r, t′)}〉. (18)

Show that, in general, we have

GR(r, r;ω) =
1

A
∑
k,k′

ei(k−k
′)·rGR(k,k′;ω), (19)
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and, for the bare Green function describing propagation from the STM-tip to the impurity atom,

GR0 (r,0;ω) =
1

A
∑
k

eik·r

ω − ξk + iη
. (20)

c:

Write down the equations of motion for the following two retarded Green-functions:

GR(k,k′; t− t′) =− iθ(t− t′)〈{ck(t), c†k′(t
′)}〉, (21)

GR(d,k′; t− t′) =− iθ(t− t′)〈{cd(t), c†k′(t
′)}〉, (22)

and Fourier-transform these equations to frequency-space. Solve the transformed equations to show that

GR(k,k′;ω) =
1

ω − ξk + iη

[
δk,k′ +

(
|t|2

ω − εd + iη

)
1

A
∑
k′′

GR(k′′,k′;ω)

]
. (23)

d:

From equation (23) derived in question c, show that

GR(r, r;ω) = GR0 (r, r;ω) +GR0 (r,0;ω)TR(0,0;ω)GR0 (0, r;ω), (24)

with the so-called T-matrix given by

TR(0,0;ω) =
|t|2

ω − εd − ΣR(ω)
. (25)

Give an explicit expression for ΣR(ω) and argue what it is the self-energy of.

e:

The T-matrix found in question d describes the repeated scattering off the impurity atom by an electron at
position r = 0. Rederive equation (25) using Feynman diagrams in space representation appropriate to the
Hamiltonian (17)? (Hint: You can use the diagrammatic elements in (E.13.3) from exercise 13.3 in the textbook
(B&F), with U = 0.)

f:

Show that the local density of states at the location of the STM-tip is given by

A(r, r;ω) =2πN(ω) + 2
(
Im[GR0 (r,0;ω)]

)2 {
2qRe[TR(0,0;ω)] + (1− q2)Im[TR(0,0;ω)]

}
, (26)

in terms of the bare density of states per area of the homogeneous electron gas, N(ω), and the dimensionless quantity

q = −Re[GR0 (r,0;ω)]

Im[GR0 (r,0;ω)]
. (27)
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g:

We proceed by making a few simplifying approximations. First of all, we shall neglect the real-part of ΣR(ω)
and assume the imaginary part to be constant, i.e. assume that ΣR(ω) ≈ −iΓ (express Γ in terms of t). Furthermore,
we assume that εd,Γ� µ, which allows us to neglect the ω-dependence in GR0 (r,0;ω) in equation (26) (argue why).
Finally, we assume that Im[GR0 (r,0;ω)] ≈ Im[GR0 (r, r;ω)] (what does this require for the distance |r|?).

Under these assumptions, show that equation (26) derived in question f can be rewritten as

A(r, r; x) = 2πN(0)
(q + x)2

1 + x2
, (28)

with x = (ω − εd)/Γ. Sketch A as a function of x, for representative values of q, and describe in words the change
in the density of states at position r due to the hybridization with the impurity atom at r = (0, 0). Finally, make a
rough prediction for the I-V (current-voltage) characteristics which will be recorded by the STM tip, i.e. how does I
depend on V?

The Fano profile formula (28) which you have just derived, was
first derived by Ugo Fano in 1935, in a seminal paper on the ab-
sorption spectrum of noble gases. Fano later published a general-
ized version of his calculation in a 1961 paper which, by now, has
some 5000 citations. As Fano (and now you) demonstrated, a dis-
crete level can have a profound influence on the density of contin-
uum states. This simple formula has been widely used throughout
nuclear, atomic, molecular and condensed-matter physics.

Ugo Fano at work ...




