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PHZ7428–Modern Condensed Matter Physics

Spring 2019

Take-home final examination – solutions

April 19, 2019

Due: April 26, 2019

1-week take-home exam containing three separate problems. The problems should be worked out alone and
may not be discussed, in specifics, with others.

Problem 1

In the following, we shall consider a one dimensional chain having N sites and mobile electrons which we model by
a simple tight-binding model:

H0 =
∑
k,σ

ξkc
†
kσckσ, (1)

with dispersion relation

ξk = −2t cos(ak), for k ∈ [−π/a, π/a], (2)

where t denotes the nearest-neighbor hopping amplitude (in dimensions of energy), k is the wave-vector along the
chain and a is the lattice constant. We consider the half-filled band and hence take the chemical potential to be zero.

a:

Sketch the dispersion relation (ξk vs. k) and indicate the Fermi level. Show that the density of states, i.e.
N(ω) =

∑
k δ(ω − ξk), is given by

N(ω) =
N

π
(4t2 − ω2)−1/2θ(2t− |ω|). (3)

(hint: remember that δ(f(x)) =
∑
x0
δ(x− x0)/|f ′(x0)|, where x0 are the zeros of f(x)).

Note if f(k) = ω + 2t cos ak, then f ′(k) = −2at sin(at) = 2at
√

1− (ξk/2t)2

N(ω) =
1

Na

∑
k

δ(ω − ξk) =
∑
s=±1

∫ π/a

−π/a

dk

2π

δ(k − s 1
a cos−1(ω/2t))

a
√

4t2 − ω2
= θ(2t− |ω|) 1

πa
√

4t2 − ω2
.

Note there are two roots, ±k0, so the DOS acquires a factor of 2. Sorry I did not give quite the correct definition of
the DOS in the stated problem.

b:

Assuming that T � t, show that the retarded electronic polarization bubble (cf. Fig.1a) in the static limit
and at wave-vector 2kF , i.e. Π(0)R(q, ω) for ω = 0 and q = 2kF , is given by:

Π(0)R(2kF , 0) =
N

πt
ln

(
4teγ

πT

)
, (4)

and thus diverges as T → 0. Along the way, you may want to make use of the following integral:

α

∫ α

0

dx
tanh(x)

x
√
α2 − x2

≈ ln(α) + ln(4eγ/π), forα� 1. (5)
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where γ = 0.577... is Eulers constant.

Polarization bubble

Π0(q, qn) = −2T
∑
kn

G(k + q, ikn + iqn)G(k, ikn) = −2

∫
dk

2π

[
f(ξk+q)− f(ξk)

ξk+q − ξk − iqn

]
as usual. So

ΠR
0 (2kF , 0) = −

∫
dk

π

[
f(ξk+2kF )− f(ξk)

ξk+2kF − ξk − i0+

]
.

Nesting for half-filled band: ξk+2kF = −2t cos(ak + a2( π2a )) = 2t cos(ak) = −ξk. Also note f(−x) = 1− f(x). So

ΠR
0 = − 1

π

∫
BZ

1− 2f(ξk)

−2ξk − i0+

= − 1

π

∫
dωN(ω)

tanh ω
2T

−2ω − i0+
.

Note we will drop the i0+ now since the imaginary part is clearly zero since tanh vanishes when ω = 0. So we have
to do the integral (put x = ω/2T and α = t/T )

ΠR
0 (2kF , 0) =

1

π

∫ 2t

−2t
dω

tanh ω
2T

ω
√

4t2 − ω2
=

1α

2πt

∫ α

0

dx

x

tanhx√
α2 − x2

=
α

πt

 1

α

∫ α

0

log(α+
√
α2 − x2)− log x

cosh2 x
−

1

α
log

(
α+
√
α2 − x2
x

)
tanhx|α0︸ ︷︷ ︸

0


≈

α�1

1

πt

log 2α

∫ ∞
0

dx
1

cosh2 x︸ ︷︷ ︸−
∫ ∞
0

dx
log x

cosh2 x︸ ︷︷ ︸


1 − log( 4eγ

π ), γ = Euler’s const. = 0.577

=
1

πt
log

8eγt

πT

This is a bit different from the ”correct” answer given in the problem, but it has the required log divergence at T → 0.

c:

The harmonic vibrations of the underlying ion lattice can be described by the following (retarded) free phonon
Green’s function:

D(0)R(q, ω) =
2ωq

(ω + i0+)2 − ω2
q

. (6)

Within the so-called Debye model, the energy of an acoustic phonon as a function of its wave-vector is given by the
dispersion-relation ωq = vD|q|. This phonon mode interacts with the electron system via the vertex shown in Fig.1b,
corresponding to the coupling constant

gel−ph =

(
λ

ωq
2N(0)

)1/2

, (7)

N(0) being the density of states at the Fermi level. The dressed phonon Green’s function can be found from the
following Dyson equation for the retarded Green’s function (cf. Fig.1c)

DR(q, ω) = D(0)R(q, ω)−D(0)R(q, ω)gel−phΠ(0)R(q, ω)gel−phDR(q, ω), (8)
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= +

a)

c)

b)

FIG. 1: Feynman diagrams corresponding to respectively: a) the electron polarization bubble Π(0)R (dots merely denote the
beginning and ending of Greens functions), b) the electron-phonon interaction vertex, here denoted by a black square and
corresponding to a factor of gel−ph, and c) the Dyson equation for the renormalized phonon Green’s function, taking the
polarization bubble as the irreducible phonon self-energy.

which is quite an accurate approximation for q ≈ 2kF and ω ≈ 0, when T � t. (Note: the minus in this Dyson
equation comes from particular Feynman rules for phonon propagators which you are not expected to know).

Solve this Dyson equation for the renormalized phonon Green’s function, DR(q, ω), and find the renormalized
phonon dispersion-relation ω̃q for q ≈ 2kF . You may neglect the (q, ω)-dependence of the polarization bubble and use

the constant value for Π(0)R found above for (q, ω) = (2kF , 0).

So first of all the electronic DOS at the Fermi level is N(0) = N/(2πt).Then the el-ph coupling const. is g2el−ph =

λωq/(2N(0)) = λ(ωqπt/N). We are told to approximate the polarization operator in the phonon self energy by its
static value at 2kF , so from Dyson we know that the inverse propagator is

DR−1(q, ω) ' D(0)R−1(q, ω) + g2el−phΠ(0)(2kF , 0)

=
ω2 − ω2

q

2ωq
+ λ

ωqπt

N

N

πt
log

(
8teγ

πT

)
=

ω2 − ω2
q

2ωq
+ λωq log

(
8teγ

πT

)
.

The renormalized phonon frequencies are just the poles of the inverse Green’s function. So we set the above equal to
zero, to find

ω2 = ω2
q

[
1− 2λ log

(
8teγ

πT

)]
.

d:

Show that for q ≈ 2kF this renormalized dispersion relation, ω̃q, vanishes identically when decreasing the tempera-
ture to some critical value TC , where

TC =
4t

π
eγe−1/(2λ). (9)

For T < TC , this ω̃q (near q ≈ 2kF ) becomes imaginary and hence physically meaningless. Approaching TC from
above, ω̃q vanishes as a power-law very close to TC . Expand ω̃q in (T − TC)/TC � 1 and find the exponent ν for the
transition to ω̃q = 0, i.e. the exponent in the relation:

ω̃q ∝ |T − TC |ν , forT >∼ TC . (10)
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As T → 0, the 2nd term in the renormalized phonon dispersion increases, and the phonon will soften (indicating
an instability) when 8teγ/(πT ) = e1/(2λ), i.e. at a temperature

TC =
8t

π
eγe−1/(2λ).

This is different by the same factor of two from the “correct” answer as the previous result.

Now put T = TC + δT and expand in τ = δT/TC = (T − TC)/TC . Near the transition, the frequencies behave as

ω̃2
q = ω2

q2λ log(1 + τ)) ' ω2
q2λτ.

so ω̃q ∝ |T − TC |1/2 near the transition, ν = 1/2.

This demonstrates an instability of one-dimensional electron systems due to
a spontaneous deformation of the ion-lattice, here signalled by a soft mode in
the phonon spectrum. For T < TC , it costs no energy to excite a phonon,
and the phonon-system is therefore unstable towards a spontaneous deforma-
tion involving two different lattice-spacings. This was first demonstrated (in a
different manner!) by Rudolf Peierls (1907-1995) in 1930.

Problem 2

In this problem we remain focussed on electrons in two dimensions (2D). The study of 2D electron gases is relevant
for a large field of active research since they can be realized in so-called GaAs heterostructures. The physics of 2D
electrons is surprisingly rich and includes e.g. the fractional quantum Hall effect which was the subject of a Nobel
prize in 1998. Below, you will study the electron-electron interactions in 2D, and derive the associated screening and
plasmons properties. Throughout this problem we take h̄ = 1.

a:

The Hamiltonian which we study is

H =
∑
kσ

ξkc
†
kσckσ +

1

2A
∑
kk′q

∑
σσ′

W 2D(q)c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ, (11)

where A is the area of our sample, ξk = k2

2m − µ, the usual quadratic dispersion of free electrons. By Fourier

transforming the real-space potential W (r1 − r2) = 1
4πεrε0

e2

|r1−r2| , show that

W 2D(q) =
e2

2εrε0q
. (12)

You may want to use that
∫ 2π

0
dθ exp(iα cos θ) = 2πJ0(α) and

∫∞
0
dxJ0(bx) = 1/b, where J0 is the zero’th order Bessel

function of the first kind.

W2D(q) =

∫
d2re−iq·r

1

4πεrε0

e2

r
=

e2

4πεrε0

∫
dθdreiqr cos θ =

e2

2εrε0

∫
drJ0(qr) =

e2

2εrε0q

b:

Within RPA, the dielectric function ε2DRPA(q, iqn) is given by

ε2DRPA(q, iqn) = 1−W 2D(q)χ2D
0 (q, iqn), (13)
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with

χ2D
0 (q, iqn) = 2

∫
d2k

(2π)2
nF (ξk+q)− nF (ξk)

ξk+q − ξk − iqn
. (14)

Explain how one can derive this expression for χ2D
0 (q, iqn).

−T
∑
n

∑
k

G0(k, iωn)G0(k + q, iωn + iqm) = −
∑
k

∫
C

dz

2πi
nF (z)

1

iωn − ξk
1

iωn + iqm − ξk+q

= −
∑
k

∫
C′

dz

2πi
nF (z)

1

z − ξk
1

z + iqm − ξk+q
=
∑
k

(
nF (ξk)

ξk + iqm − ξk+q
+
nF (ξk+q − iΩm)

ξk+q − iqm − ξk

)
,

where as usual C is the contour encircling the Matsubara points on the imaginary z axis, and C ′ is the deformed
contour encircling the poles on the real axis.The - sign arises because C ′ circles the poles in a clockwise fashion. Since
Ωm is a bosonic frequency, eiβqm = 1 and nF (ξk+q − iqm) = nF (ξk+q), so the final result is (with spin sum and
volume=1)

χ2D
0 (q, iqm) = 2

∑
k

(
nF (ξk)− nF (ξk+q)

ξk + iqm − ξk+q

)
= 2

∫
d2k

(2π)2
nF (ξk+q)− nF (ξk)

ξk+q − ξk − iqn
. (15)

So the only difference from 3 dimensions is the dimension of the k-integration.

c:

Write down the renormalized Coulomb interaction WRPA(q, iqn), and derive an expression for the static
Thomas-Fermi screening wavenumber k2Ds in terms of physical parameters of the electron gas. Using that for
GaAs: εr = 13, m = 0.067me (me is the bare electron mass), how does k2Ds compare to kF when the density is
n = 2× 1015m−2?

Within RPA, the dielectric function is

ε(k, ωn)|RPA = 1−W 2D(q)χ2D
0 (q, ωn).

Taking the static homogeneous limit for Thomas-Fermi theory, the limit q → 0 we find

χ2D
0 (0, 0)→ −2

∑
k

−∂f
∂εk

' −2N0

∫
dξk
−∂f
∂ξk

= −2N0 =
m

π
.

Note the form of the expression is independent of dimension, but of course in the 2D electron gas the expression for
N(0) is constant. The dielectric function then becomes

ε2D(0, 0) = 1− e2

2εrε0q

m

π
≡ 1− k2Ds

q
.

In dimensionful units (put back h̄),

k2Dx =
me2

2εrε0πh̄
2 = a−10

(m/me)

2εr
= (0.5

◦
A)−1

0.067

2 13
= 0.0049

◦
A
−1
,

where a0 is the Bohr radius. Fermi wave vector is

kF = (2πn)1/2 = (2π[2× 10−5
◦
A
−2

])1/2 = 0.11
◦
A
−1

so two are quite similar.
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d:

For kBT/εF � 1 and q � kF , show that

Reχ2D
0 (q, ω) =

1

2π2

kF
h̄vF

∫ 2π

0

dθ
vF q cos θ

ω − vF q cos θ
. (16)

At low T and q � kF , we may write ξk+q ' ξk + vk ·q, nF (ξk+q) ' nF (ξk) + (vk ·q)∂nF (ξk)
∂ξk

, so that the numerator

of the integrand in χ2D
0 is vk ·q∂nF∂ξk

. Since the Fermi function derivative restricts the relevant ξk’s to a range of order

T , we may replace vk by vF . Then the energy integration
∫
dξ ∂nF∂ξk

= −1 may be performed, leaving

Re χ2D
0 (q, ω) =

1

2π
N0

∫ 2π

0

dθ
vF q cos θ

ω − vF q cos θ
=

kF
2π2vF

∫ 2π

0

dθ
vF q cos θ

ω − vF q cos θ

e:

Using Eq. (16) in the long wavelength limit q � ω/vF , show that the 2D plasmon dispersion ω(q) is given
by

ω(q) = vF

√
k2Ds q

2
. (17)

What is the crucial difference compared to the 3D case? Given that visible light corresponds to the q → 0 limit, argue
whether a 2D electron gas appears reflective or transparent to the human eye.

In small q limit we can Taylor expand integrand and keep leading term

Re χ2D
0 (q, ω) ' kF

2π2vF

∫ 2π

0

dθ(vF q)
2 cos2 θ

ω2
=

kF
2πvF

(vF q)
2

ω2

so product entering RPA dielectric constant is

W 2D
0 (q)χ2D

0 (q, ω) ' e2

2εrε0q

kF
2πvF

(vF q)
2

ω2
=

(vF k
2D
s )(vF q)

2ω2
.

Plasma pole will occur in this limit when the inverse dielectric constant has a pole, or when the dielectric const. has

a zero, meaning 1− (vF k
2D
s )(vF q)
2ω2 = 0, or

ω = vF

√
k2Ds q

2
.

A 3D metal is transparent above its plasma frequency, but reflective below it. Now in 2D the plasma freqency
effectively extends to zero, so we would expect a perfectly 2D electron gas to be transparent. However in practice the
answer depends on the details of the actual thickness of the “2D” gas. See optical properties of solids books e.g. one
by D. Tanner, to appear.

f:

Where is the particle-hole continuum in 2D? Sketch the analog of Fig. 14.2 from Bruus & Flensberg. What
is the condition that the plasmons are not damped by particle-hole excitations in the small q limit? Are plasmons
damped in GaAs in this limit?
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FIG. 2: shaded blue region is schematic p-h continuum, red line is 2D plasmon. Note while there must be a range of q for
which the plasmon is undamped, it is not clear if the mode enters the continuum or not. Depends on εr.

Problem 3
In the following problem, we consider a single impurity atom on the surface of a metal. The atom is arranged such

that a single atomic orbital, henceforth labeled by subscript d, hybridizes with the conduction-electrons in the metal.
This system can be probed by a scanning tunneling microscope (STM) and the question is what one should expect for
the tunneling current when the STM tip is brought in close to the metal a certain distance away from the impurity
atom.

As a simple model for this physical system, we shall approximate the metal-surface by a two-dimensional electron-gas

having a simple quadratic dispersion ξk = k2

2m − µ, where µ denotes the electron chemical potential. The impurity-
atom is modeled by a single resonant level with momentum-independent hybridization, t, to the metal at the position
r = (x, y) = (0, 0). Throughout this problem we shall take h̄ = 1 and for simplicity we shall omit the spin of the
electrons. The area of the electron-gas we denote by A.

a:

Argue how the Hamiltonian,

H =
∑
k

ξkc
†
kck + εdc

†
dcd +

1√
A

∑
k

(
t∗c†kcd + tc†dck

)
(18)

reflects this model, i.e. what is the physical content of the individual terms? Argue why H includes merely a
hybridization with conduction-electrons at position r = (0, 0). Make a simple drawing sketching the system. Finally,
list a few additional terms and complications which one might have added to this Hamiltonian in order to make it
more realistic.

ξk represents a band of conduction electrons, while εd is the energy of the localized fermionic level. The hybridization
term describes hopping onto the level from the conduction band and back again. This is the so-called Anderson model,
except that there is no Hubbard-type U term penalizing double occupation of the impurity site. Thus there can be
no true moment formation.

b:

Assuming that the STM tip probes the conduction-electron system at a position r relative to the location of
the impurity atom, we need to calculate the retarded Green function describing the propagation from r to r:

GR(r, r;ω) = −iθ(t− t′)〈{ψ(r, t), ψ†(r, t′)}〉. (19)
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Show that, in general, we have

GR(r, r;ω) =
1

A
∑
k,k′

ei(k−k
′)·rGR(k,k′;ω), (20)

and, for the bare Green function describing propagation from the STM tip to the impurity atom,

GR0 (r,0;ω) =
1

A
∑
k

eik·r

ω − ξk + iη
. (21)

The impurity breaks translational invariance, so the Green’s function must be a function of k and k′ independently,

as discussed in class and in the notes for a potential scattering-type term Vkk′c†kck′ added to the Hamiltonian. The
second term results from a Fourier transform with respect to the difference variable r−0 of the unperturbed G0(k, ω)
Green’s function for the homogeneous system of conduction electrons, back to real space.

c:

Write down the equations of motion for the following two retarded Green’s functions:

GR(k,k′; t− t′) =− iθ(t− t′)〈{ck(t), c†k′(t
′)}〉, (22)

GR(d,k′; t− t′) =− iθ(t− t′)〈{cd(t), c†k′(t
′)}〉, (23)

and Fourier-transform these equations to frequency-space. Solve the transformed equations to show that

GR(k,k′;ω) =
1

ω − ξk + iη

[
δk,k′ +

(
|t|2

ω − εd + iη

)
1

A
∑
k′′

GR(k′′,k′;ω)

]
. (24)

ċk = −i[ck, H] = −iεk − it∗cd
ċd = −i[cd, H] = −iεd − t

∑
k

ck

from which you can derive the eqns. of motion for the G’s:

d

dt
GR(k,k′, t) = −iδ(t)δkk′ − iθ(t)〈[ċk(t), c′†k ]+〉

d

dt
GRd (d,k′, t) = −iθ(t)〈[ċd(t), c′†k ]+〉

Fourier transforming and using the representation of the θ function we find,

(ω − εk + iη)GR(k,k′, ω) = δkk′ + t∗GR(d,k′, ω)

(ω − εd + iη)GR(d,k′, ω) = t
∑
k′

GR(k,k′, ω)

or

GR(k,k′, ω) = GR0 (k, ω)δkk′ + t∗GR0 (k, ω)GR(d,k′, ω)

GR(d,k′, ω) = t
∑
k

GR0 (d, ω)GR(k,k′, ω),

where GR0 (k
d , ω) = (ω − εk,d + iη)−1.Combine the two equations to get

GR(k,k′, ω) = GR0 (k, ω)δkk′ + |t|2GR0 (k, ω)GR0 (d, ω)
∑
k′′

GR(k′′,k′, ω)
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d:

From equation (24) derived in question c, show that

GR(r, r;ω) = GR0 (r, r;ω) +GR0 (r,0;ω)TR(0,0;ω)GR0 (0, r;ω), (25)

with the so-called T-matrix given by

TR(0,0;ω) =
|t|2

ω − εd − ΣR(ω)
. (26)

Give an explicit expression for ΣR(ω) and argue what it is the self-energy of.

Fourier transforming the answer to (c) (note G(r, r′) =
∑

k,k′ e−ik·reik
′·r′) gives

GR(r, r′, ω) = GR0 (r− r′, ω) + |t|2G0(r, ω)G0(d, ω)GR(0, r′, ω)

Now let’s write down 2 special cases: put r = r′:

GR(r, r, ω) = GR0 (0, ω) + |t|2GR0 (r, ω)GR0 (d, ω)GR(0, r, ω)

And now put r, r′ = 0, r:

GR(0, r) = GR0 (−r) + |t|2GR0 (0, ω)GR0 (d, ω)GR(0, r, ω)

⇒ GR(0, r) =
GR0 (−r, ω)

1− |t|2GR0 (0, ω)GR0 (d, ω)

⇒ G(r, r, ω) = GR0 (0, ω) + |t|2G0(r, ω)GR0 (d, ω)

[
GR0 (−r, ω)

1− |t|2GR0 (0, ω)GR0 (d, ω)

]
⇒ T (0, 0, ω) =

|t|2GR0 (d, ω)

1− |t|2GR0 (0, ω)
=

|t|2

ω − εd + iη − |t|2GR0 (0, ω)

e:

The T-matrix found in question d describes the repeated scattering off the impurity atom by an electron at
position r = 0. Rederive equation (26) using Feynman diagrams in space representation appropriate to the
Hamiltonian (18)? (Hint: You can use the diagrammatic elements in (E.13.3) from exercise 13.3 in the textbook
(B&F), with U = 0.)

FIG. 3: Diagrammatic equation for conduction electron Green’s function.
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f:

Show that the local density of states at the location of the STM-tip is given by

A(r, r;ω) =2πN(ω) + 2
(
Im[GR0 (r,0;ω)]

)2 {
2qRe[TR(0,0;ω)] + (1− q2)Im[TR(0,0;ω)]

}
, (27)

in terms of the bare density of states per area of the homogeneous electron gas, N(ω), and the dimensionless quantity

q = −Re[GR0 (r,0;ω)]

Im[GR0 (r,0;ω)]
. (28)

In terms of our definition of the spectral function in class,

A(r, r, ω) = − 1

π
ImGR(r, r, ω) = − 1

π
Im
[
GR0 (0, ω) +GR0 (r, ω)T (0, ω)GR0 (−r, ω)

]
= − 1

π

[
GR0
′′
(0)−GR0

′′
(r)GR0

′′
(−r)T ′′ +GR0

′
(r)GR0

′
(−r)T ′′ +GR0

′′
(r)GR0

′
(−r)T ′ +GR0

′
(r)GR0

′′
(−r)T ′

]
= A0(0, ω)− 1

π

[
−G′′0(r)2T ′′ +G′0(r)2T ′′ + 2G′′0(r)G′0(r)T ′

]
,

where ′ and ′′ mean real and imaginary parts, respectively, and I’ve used the fact that the Hamiltonian is symmetric
under reflection about the impurity site. I also dropped the ”R” and the ω argument since it is the same for all
functions. The change in the spectral function due to the impurity is now

δA(r, r, ω) = − 1

π
GR0
′′
(r)2

[
−T ′′ + 2

G′0
G′′0

T ′ +

(
G′0
G′′0

)2

T ′′

]

=
1

π
GR0
′′
(r)2

[
(1− q2)T ′′ + 2qT ′

]

g:

We proceed by making a few simplifying approximations. First of all, we shall neglect the real part of ΣR(ω)
and assume the imaginary part to be constant, i.e. assume that ΣR(ω) ≈ −iΓ (express Γ in terms of t). Furthermore,
we assume that εd,Γ� µ, which allows us to neglect the ω-dependence in GR0 (r,0;ω) in equation (27) (argue why).
Finally, we assume that Im[GR0 (r,0;ω)] ≈ Im[GR0 (r, r;ω)] (what does this require for the distance |r|?).

Under these assumptions, show that equation (27) derived in question f can be rewritten as

A(r, r;x) = 2πN(0)
(q + x)2

1 + x2
, (29)

with x = (ω − εd)/Γ. Sketch A as a function of x, for representative values of q, and describe in words the change
in the density of states at position r due to the hybridization with the impurity atom at r = (0, 0). Finally, make a
rough prediction for the I-V (current-voltage) characteristics which will be recorded by the STM tip, i.e. how does I
depend on V?

Conduction electron Green’s function varies on scale of Fermi energy µ, but we are interested in energies having to
do with the impurity, εd,Γ� µ. Γ is Im part of self-energy

Γ = −Im|t|2GR0 (0, ω) ' πN0|t|2 = O(t2/µ).
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so that

T ' |t|2

ω − εd + iΓ

⇒ T ′ =
|t|2

Γ

x

x2 + 1
=

1

πN0

x

x2 + 1
; T ′′ = −|t|

2

Γ

1

x2 + 1
=

1

πN0

1

x2 + 1

with x = (ω − εd)/Γ. Now note that GR0
′′
(0, ω) '

∑
k(ω − εk + iη)−1 ' −πN0, plus we will assume that the Green’s

function does not fall off too fast, so its value on the nearest neighbor site r will be not too different. So from part
(f):

A(r, r, ω) = − 1

π
GR0
′′
(0, ω) +

1

π
GR0
′′
(r)2

[
(1− q2)T ′′ + 2qT ′

]
= N0

[
1 +

1− q2 + 2qx

1 + x2

]
= N0

[
(x+ q)2

1 + x2

]
.

I don’t get the factor of 2π claimed in the problem, but I suspect this is different convention for spectral function.
Plot of lineshape is

FIG. 4: Types of lineshapes possible within Fano description. Spectral function on impurity or nearby site vs. x for q =
0.1, 0.5, 1, 3.

The interpretation of the Fano factor q is not trivial, but it can be shown to represent the interference between the
tunneling of a localized d electron and a conduction band electron. For more information, see the beautiful paper by
Lu Yu and co-workers, H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu Phys. Rev. Lett. 92, 256602. Note
this paper is written for the Anderson model including a large Hubbard U term, and most of the interest is in the
interference between the conduction electrons and the Kondo resonance, which we do not have here (U = 0). The
resonance seen for large q in the STM differential conductance at ∝ A(r, r, ω − eV ), where V is the applied bias, is
called the Fano resonance. Evan for smaller q the large asymmetry of the conductance is a signal of the interference
between two tunneling processes involving a localized level at finite energy.
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The Fano profile formula (29) which you have just derived, was
first derived by Ugo Fano in 1935, in a seminal paper on the
absorption spectrum of noble gases. Fano later published a gen-
eralized version of his calculation in a 1961 paper. As Fano (and
now you) demonstrated, a discrete level can have a profound in-
fluence on the density of continuum states. This simple formula
has been widely used throughout nuclear, atomic, molecular and
condensed-matter physics.

Ugo Fano at work ...


