
Module 3 : Superconductivity phenomenon

Lecture 2 : Solution of London equations and free energy calculations

 
Solution of London Equations for sample cases

Flat slab in a magnetic field

Consider a flat superconducting slab of thickness  in a magnetic field  parallel to the slab. The
boundary condition is that field match at . Subject to this condition, the solution to the

London equation , where  is the microscopic value of the flux density, is easily

determined to be a superposition of two exponentials. The result can be written as

 (13)

Clearly, the minimum value of the flux density is attained at the mid-plane of the slab where it has a
value .

The field variation inside a superconducting slab is shown.

Averaging this internal field over the sample thickness one gets

 (14)

Let us consider the limit . This leads to  deep inside the superconductor. In the other

limit, i.e., , we expand . Therefore,  approaches . Since

, we get

 (15)

As a consequence, magnetisation measurements can be made on thin films of known thicknesses and
the penetration depth can be estimated from such measurements. Since the magnetisation is reduced
below its Meissner value, the effective critical field for a thin sample is greater than that for bulk. The
difference in the free energy between the normal state and the superconducting state is

 (16)



For the case of complete flux expulsion, the above difference in free energies is

 (17)

This energy, which stabilises the superconducting state is called the condensation energy and  is
called the thermodynamic critical field.

For a thin film sample (with a field applied parallel to the plane) we get,

 (18)

In terms of the bulk thermodynamic critical field

 (19)

Critical current of a wire

Consider a long superconducting wire having a circular cross-section of radius . Also, assume that 
. A current  is passed through the wire. This gives rise to a circumferential magnetic field at

the surface of the wire =  In a simple minded picture, when this field reaches , the wire will

become normal. Therefore, the critical current depends linearly on the radius and not on the

area. The current flows only in a surface layer of thickness . Hence, the current density
. Therefore, .

Free energy calculations

Now consider the case of a type I superconductor in a relatively large field. First we will carry out some
calculations assuming zero demagnetisation factor. For a normal sample of volume  in a magnetic
field , the Helmholtz free energy is given by

 (20)

Here  is the free energy density in zero applied field.  is the volume external to the sample
volume where the field  exists. On the other hand, for a superconductor, the field is excluded from
its interior and hence its free energy is given by

 (21)

Here we have ignored the fact that the field actually penetrates in a layer of depth  from the
surface. The difference between the above two free energies is then

 (22)

Since the condensation energy density is the stabilisation energy

 (23)

For 

 (24)

This is the energy increase (sample plus the surroundings) when a sample becomes normal at



. The increase comes about because the energy source (generator) maintaining the constant
field does work against the back emf. This emf is induced as the flux threading the sample changes
(starts entering the bulk of the superconductor). Actually, discussion in terms of a Helmholtz free energy
is appropriate for a situation where  is held constant (i.e., no induced emf). Here, we are holding 
constant so the appropriate thermodynamic potential is the Gibbs free energy . Recall that the Gibbs
free energy density  is related to the Helmholtz free energy density  as follows

 (25)

In the normal state, the local flux density  is equal to the average flux density  which is the same
as the applied field . Therefore we get

 (26)

In the superconducting state, flux is excluded from the superconductor, so . This gives

 (27)

The difference between the two free energies is then

 (28)

For an applied field equal to the thermodynamic critical field, we get  i.e., there will be a
phase equilibrium between the normal and the superconducting phase at .

Field variation for a non-zero demagnetisation factor

Consider a spherical sample of radius . Outside the sphere, we have  and .

Consequently . Clearly,  approaches  as . Also, the perpendicular component

of  is zero at . The solution to to  is then

 (29)

Therefore, the tangential component of  at the surface of the sphere can be calculated and is given
below

 (30)

This exceeds the applied field at the equator. Even when the applied field is less than , so long as it
is greater than ,  can attain a value of  at the equator. Therefore, for 

there will be a coexistence of normal and superconducting regions. This has been called the
``intermediate'' state. Note that this is different from the ``mixed'' state which occurs at applied
magnetic fields between  and , even in the absence of demagnetisation effects.In general, for
ellipsoidal samples (i.e., where a demagnetisation factor is well defined), when the applied field is in the

range (where  is the demagnetisation factor) an intermediate state will occur. The

value of  for a sphere is , for a flat plate with field perpendicular to it is 1, for a long cylinder with

the field along the axis it is , and for a long cylinder with a field perpendicular to its axis it is .



Contrast of exterior-field pattern
(a) when demagnetizing coefficient is nearly zero and

(b) when it is 1/3 for a sphere.
In (b) teh equatorial field is three halves the applied 

field for the case of full Meissner effect, which is shown.

The field pattern inside a spherically shaped superconducting sample is shown. The larger concentration
of field lines near the equator is a result of the demagnetisation factor.
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