Outline

- The QCD Group: Organization, Activities, Run 2 Analyses
- QCD Analyses: “Isolating the Multiple Parton Scattering Component of the Underlying Event in Run 2”
- Other QCD Group Presentations:
 - “Jet Production using a Cone Algorithm” - Frank Chlebana (15 min)
 - “Jet Production using the KT Algorithm” - Regis Lefevre (15 min)
 - “Jet Shapes” - Mario Martinez (15 min)
 - “Diphoton Production” – Yanwen Liu (15 min)
 - “Diffraction @ CDF” - Koji Terashi (15 min)
Conveners:

- Mario Martinez-Perez (2nd year)
- Rick Field (1st year)

Meetings:

- On Weeks 9:00-11:30am CDF Theater
- Off Weeks 11:30-1:00pm Trailer 159

QCD Internal WEBsite:

- Meeting Agenda & Archived Talks (with author index)
- Blessed Plots and Analyses
- Information of Monte-Carlo Datasets
- QCD Secondary Datasets
- QCD Graduate Students
The QCD Group
Run 2 Analyses

- **Inclusive Jet Cross Section (JetClu & MidPoint)**: Frank Chlebana, Anwar Bhatti, Ken Hatakeyama, Giuseppe Latino, Joey Huston, Gene Flanagan
- **Inclusive Jet Cross Section (KT Algorithm)**: Regis Lefevre, Olga Norniella
- **DiJet Mass/Angular Distribution**: Robert Harris, Lee Pondrom
- **DiPhoton Production**: Yanwen Liu
- **b-Jet & b-bbar Jet Cross Sections**: Monica D'Onofrio, Anant Gajjar
- **Jet Shapes (light and heavy quarks)**: Mario Martinez, Olga Norniella, Alison Lister
- **Quark and Gluon Fragmentation**: Andrey Korytov, Sasha Pronko, Lester Pinera, Sergio Jindariani
- **W+Jets**: Andrea Messina, Ben Cooper
- **Z+jets (event structure & underlying event)**: Rick Field, Craig Group
- **Min-Bias and the Underlying Event**: Rick Field, Alberto Cruz
- **Diffractive Physics**: The “Diffractive Group”
The QCD Group
Run 2 Analyses

- **Inclusive Jet Cross Section (JetClu & MidPoint):** Frank Chlebana, Anwar Bhatti, Ken Hatakeyama, Giuseppe Latino, Joey Huston, Gene Flanagan
- **Inclusive Jet Cross Section (KT Algorithm):** Regis Lefevre, Olga Norniella
- **DiJet Mass/Angular Distribution:** Robert Harris, Lee Pondrom
- **DiPhoton Production:** Yanwen Liu
- **b-Jet & b-bbar Jet Cross Sections:** Monica D'Onofrio, Anant Gajjar
- **Jet Shapes (light and heavy quarks):** Mario Martinez, Olga Norniella, Alison Lister
- **Quark and Gluon Fragmentation:** Andrey Korytov, Sasha Pronko, Lester Pinera, Sergio Jindariani
- **W+Jets:** Andrea Messina, Ben Cooper
- **Z+jets (event structure & underlying event):** Rick Field, Craig Group
- **Min-Bias and the Underlying Event:** Rick Field, Alberto Cruz
- **Diffractive Physics:** The “Diffractive Group”
The “Underlying Event” in a Hard Scattering: Consists of hard initial & final state radiation (unavoidable) plus the “beam-beam remnants”. Plus possible multiple parton interactions (more active underlying event!).

The “Underlying Event” in Run II at CDF: The Run 2 analysis gives a more detailed look at the “underlying event” in hard scattering processes and compares the data with PYTHIA Tune A (with multiple parton interactions) and HERWIG (without multiple parton interactions).
The “Underlying Event” in a Hard Scattering: Consists of hard initial & final state radiation (unavoidable) plus the “beam-beam remnants”. Plus possible multiple parton interactions (more active underlying event!).

The “Underlying Event” in Run II at CDF: The Run 2 analysis gives a more detailed look at the “underlying event” in hard scattering processes and compares the data with PYTHIA Tune A (with multiple parton interactions) and HERWIG (without multiple parton interactions).
Charged Particle Density $\Delta\phi$ Dependence

- Look at the “transverse” region as defined by the leading jet ($\text{JetClu R} = 0.7$, $|\eta| < 2$) or by the leading two jets ($\text{JetClu R} = 0.7$, $|\eta| < 2$). “Back-to-Back” events are selected to have two jets and only two jets with $E_T > 15$ GeV with Jet#1 and Jet#2 nearly “back-to-back” ($\Delta\phi_{12} > 150^\circ$) with almost equal transverse energies ($E_T(\text{jet#2})/E_T(\text{jet#1}) > 0.8$).

- Shows the $\Delta\phi$ dependence of the charged particle density, $dN_{\text{chg}}/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ relative to jet#1 (rotated to 270$^\circ$) for $30 < E_T(\text{jet#1}) < 70$ GeV for “Leading Jet” and “Back-to-Back” events.
Shows the average charged particle density, $dN_{\text{chg}}/d\eta d\phi$, in the "transverse" region ($p_T > 0.5$ GeV/c, $|\eta| < 1$) versus $E_T(jet#1)$ for "Leading Jet" and "Back-to-Back" events.

Comparing the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM.
"Transverse" Charge Density versus E_T(jet#1)

- Shows the average charged particle density, $dN_{\text{chg}}/d\eta d\phi$, in the "transverse" region ($p_T > 0.5$ GeV/c, $|\eta| < 1$) versus E_T(jet#1) for "Leading Jet" and "Back-to-Back" events.

- Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM.
Charged Particle Density

PYTHIA Tune A vs HERWIG

HERWIG (without multiple parton interactions) produces too few charged particles in the “transverse” region for $30 < E_T(\text{jet#1}) < 70$ GeV!
Use the leading jet in “back-to-back” events to define the “transverse” region and look at the maximum p_T charged particle in the “transverse” region, PT_{max}.

Look at the $\Delta \phi$ dependence of the “associated” charged particle and PT_{sum} densities, $dN_{chg}/d\eta d\phi$ and $dPT_{sum}/d\eta d\phi$ for charged particles ($p_T > 0.5 \text{ GeV/c, } |\eta| < 1$, not including PT_{max}) relative to PT_{max}.

Rotate so that PT_{max} is at the center of the plot (i.e. 180°).
Look at the $\Delta \phi$ dependence of the “associated” charged particle density, $dN_{chg}/d\eta d\phi$ for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$, not including PT_{maxT}) relative to PT_{maxT} (rotated to 180°) for $PT_{maxT} > 0.5$ GeV/c, $PT_{maxT} > 1.0$ GeV/c and $PT_{maxT} > 2.0$ GeV/c, for “back-to-back” events with $30 < E_T(jet#1) < 70$ GeV.
Look at the $\Delta \phi$ dependence of the “associated” charged particle density, $dN_{chg}/d\eta d\phi$ for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$, not including PT_{maxT}) relative to PT_{maxT} (rotated to 180°) for $PT_{maxT} > 0.5$ GeV/c, $PT_{maxT} > 1.0$ GeV/c and $PT_{maxT} > 2.0$ GeV/c, for “back-to-back” events with $30 < E_T(jet#1) < 70$ GeV.

Shows “jet structure” in the “transverse” region (i.e. the “birth” of the 3rd & 4th jet).
Shows the $\Delta \phi$ dependence of the “associated” charged particle density, $dN_{\text{chg}}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$ (not including P_T^{max}) relative to P_T^{max} (rotated to 180°) and the charged particle density, $dN_{\text{chg}}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$ relative to jet#1 (rotated to 270°) for “back-to-back events” with $30 < E_T^{\text{jet#1}} < 70$ GeV.
Shows the $\Delta \phi$ dependence of the “associated” charged particle density, $dN_{\text{chg}}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$, $\text{PTmaxT} > 2.0$ GeV/c (not including PTmaxT) relative to PTmaxT (rotated to 180°) and the charged particle density, $dN_{\text{chg}}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$, relative to jet#1 (rotated to 270°) for “back-to-back events” with $30 < E_T(\text{jet#1}) < 70$ GeV.

<table>
<thead>
<tr>
<th>$\Delta \phi$</th>
<th>Charged Particle Density: $dN/d\eta d\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

CDF Preliminary data uncorrected
"Associated" Charge Density
PYTHIA Tune A vs HERWIG

- Charged Particles
 - \(|\eta|<1.0, PT>0.5\text{ GeV/c}\)
 - \(PT_{\text{max}}T\) not included

- Back-to-Back
 - \(30 < ET(\text{jet#1}) < 70\text{ GeV}\)

CDF Preliminary
data uncorrected theory + CDFSIM

HERWIG (without multiple parton interactions) too few "associated" particles in the direction of \(PT_{\text{max}}T\)!

And HERWIG (without multiple parton interactions) too few particles in the direction opposite of \(PT_{\text{max}}T\)!
For $\text{PTmaxT} > 2.0$ GeV both PYTHIA and HERWIG produce slightly too many “associated” particles in the direction of PTmaxT!

But HERWIG (without multiple parton interactions) produces too few particles in the direction opposite of PTmaxT!
Jet Toopologies

QCD Four Jet Topology

Charged Particle Density: $dN/d\eta d\phi$

CDF Preliminary data uncorrected

30 $< E_T(jet\#1) < 70$ GeV
Back-to-Back

Jet#1

“Transverse” Region

PTmaxT

Charged Particles
($|\eta|<1.0, PT>0.5$ GeV/c)

“Transverse” Region

Associated Density
PTmaxT > 2 GeV/c
(not included)

Shows the $\Delta\phi$ dependence of the “associated” charged particle density, $dN_{chg}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$, PTmaxT > 2.0 GeV/c (not including PTmaxT) relative to PTmaxT (rotated to 180°) and the charged particle density, $dN_{chg}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$, relative to jet#1 (rotated to 270°) for “back-to-back events” with 30 $< E_T(jet\#1) < 70$ GeV.
Jet Topologies

QCD Four Jet Topology

<table>
<thead>
<tr>
<th>Jet #1 Region</th>
<th>Jet #2 Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet #3 Region</td>
<td></td>
</tr>
<tr>
<td>Jet #4 Region</td>
<td></td>
</tr>
</tbody>
</table>

Showed the $\Delta \phi$ dependence of the “associated” charged particle density, $dN_{\text{chg}}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$, $P_{T\text{max}} > 2.0$ GeV/c (not including $P_{T\text{max}}$) relative to $P_{T\text{max}}$ (rotated to 180°) and the charged particle density, $dN_{\text{chg}}/d\eta d\phi$, $p_T > 0.5$ GeV/c, $|\eta| < 1$, relative to jet#1 (rotated to 270°) for “back-to-back events” with $30 < E_T(\text{jet#1}) < 70$ GeV.
Jet Topologies

Data have about equal amounts of 3 and 4 jet topologies!

Same events!

Shows the data on the number of jets (JetClu, R = 0.7, |η| < 2, E_T(jet) > 3 GeV) for “back-to-back” events with 30 < E_T(jet#1) < 70 GeV and PTmaxT > 2.0 GeV/c.
Jet Multiplicity

Jet Multiplicity ET > 3 GeV

- Shows the data on the number of jets (JetClu, R = 0.7, |η| < 2, E_T(jet) > 3 GeV) for “back-to-back” events with 30 < E_T(jet#1) < 70 GeV and PTmaxT > 2.0 GeV/c.

- Compares the (uncorrected) data with HERWIG after CDFSIM.

Data have about equal amounts of 3 and 4 jet topologies!
Jet Multiplicity ET > 3 GeV

Shows the data on the number of jets (JetClu, R = 0.7, |η| < 2, E_T(jet) > 3 GeV) for “back-to-back” events with 30 < E_T(jet#1) < 70 GeV and PTmaxT > 2.0 GeV/c.

Comparing the (uncorrected) data with PYTHIA Tune A after CDFSIM.
Jet Multiplicity ET > 3 GeV

Jet #1 Direction
- "Toward"
- "TransMAX"
- "TransMIN"
- "Away"

Jet #2 Direction
- "Toward"
- "TransMIN"
- "TransMAX"
- "Away"

Max p_T in the “transverse” region!

HERWIG (without multiple parton interactions) does not have equal amounts of 3 and 4 jet topologies!

Data have about equal amounts of 3 and 4 jet topologies!

Showing the data on the number of jets (JetClu, $R = 0.7$, $|\eta| < 2$, $E_T(jet) > 3$ GeV) for “back-to-back” events with $30 < E_T(jet#1) < 70$ GeV and $PT_{maxT} > 2.0$ GeV/c.

Compared the (uncorrected) data with HERWIG after CDFSIM.
Jet Multiplicity

- Max \(p_T \) in the “transverse” region!

Jet #1 Direction
- "Toward"
- "TransMAX"

PTmaxT

Jet #2 Direction
- "Away"

Max \(p_T \) in the “transverse” region!

HERWIG (without multiple interactions) does not have equal amounts of 3 and 4 jet topologies!

Data have about equal amounts of 3 and 4 jet topologies!

- Shows the data on the number of jets (\(\text{JetCuts} = 0.7, |\eta| < 2, E_T(jet) > 3 \text{ GeV} \)) for “back-to-back” events with \(30 < E_T(jet#1) < 70 \text{ GeV} \) and \(\text{PTmaxT} > 2.0 \text{ GeV/c} \).

- Compares the (uncorrected) data with HERWIG after CDFSIM.

Next Step
Look directly at multiple jet topologies (i.e. 4 jets) and show there is an excess due to multiple parton interactions!