My 1st Look at Ken’s 5.3.1 Photon (and Z) Stntuples

<table>
<thead>
<tr>
<th>Photon25 (cph10d)</th>
<th>No Vtx Cut</th>
<th>NZvtx <=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Events</td>
<td>9,671,427</td>
<td>9,671,427</td>
</tr>
<tr>
<td>Good Events (QCDv5)</td>
<td>8,289,860</td>
<td>8,289,860</td>
</tr>
<tr>
<td>%Good</td>
<td>85.71%</td>
<td>85.71%</td>
</tr>
<tr>
<td>Vertex Cut</td>
<td>8,289,860</td>
<td>5,284,078</td>
</tr>
<tr>
<td>ZJetAnaModule</td>
<td>8,289,860</td>
<td>5,284,078</td>
</tr>
<tr>
<td>**Z-Bosons (**eta</td>
<td><6)**</td>
<td>15,127</td>
</tr>
<tr>
<td>Tight-Tight</td>
<td>4,306</td>
<td>2,995</td>
</tr>
<tr>
<td>Back-to-Back</td>
<td>5,987</td>
<td>4,195</td>
</tr>
<tr>
<td>PTZ > 10 GeV</td>
<td>6,356</td>
<td>4,426</td>
</tr>
<tr>
<td>PTZ > 30 GeV</td>
<td>1,261</td>
<td>853</td>
</tr>
<tr>
<td>20 < ET(jet1) < 30 GeV</td>
<td>93,878</td>
<td>537</td>
</tr>
<tr>
<td>30 < ET(jet1) < 50 GeV</td>
<td>182,498</td>
<td>320</td>
</tr>
<tr>
<td>ET(jet1)> 50</td>
<td>59,000</td>
<td>143</td>
</tr>
<tr>
<td>PhoJetAnaModule</td>
<td>8,274,662</td>
<td>5,273,400</td>
</tr>
<tr>
<td>Good Photon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pho1PT > 25 GeV</td>
<td>467,314</td>
<td>339,267</td>
</tr>
<tr>
<td>Back-to-Back</td>
<td>374,050</td>
<td>271,701</td>
</tr>
<tr>
<td>pho1PT > 30 GeV</td>
<td>237,236</td>
<td>171,908</td>
</tr>
<tr>
<td>pho1PT > 50 GeV</td>
<td>27,055</td>
<td>19,622</td>
</tr>
<tr>
<td>25 < ET(jet1) < 30 GeV</td>
<td>71,050</td>
<td>50,071</td>
</tr>
<tr>
<td>30 < ET(jet1) < 50 GeV</td>
<td>94,290</td>
<td>65,020</td>
</tr>
<tr>
<td>ET(jet1)> 50</td>
<td>17,378</td>
<td>11,569</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>py Tune A (jqcd0e)</th>
<th>No Vtx Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Events</td>
<td>1,981,747</td>
</tr>
<tr>
<td>PhoJetAnaModule</td>
<td>1,981,747</td>
</tr>
<tr>
<td>Good Photon</td>
<td></td>
</tr>
<tr>
<td>pho1PT > 25 GeV</td>
<td>184,742</td>
</tr>
<tr>
<td>Back-to-Back</td>
<td>16,255</td>
</tr>
<tr>
<td>pho1PT > 30 GeV</td>
<td>97,271</td>
</tr>
<tr>
<td>pho1PT > 50 GeV</td>
<td>13,762</td>
</tr>
<tr>
<td>20 < ET(jet1) < 30 GeV</td>
<td>5,745</td>
</tr>
<tr>
<td>30 < ET(jet1) < 50 GeV</td>
<td>2,262</td>
</tr>
<tr>
<td>ET(jet1)> 50</td>
<td>339</td>
</tr>
</tbody>
</table>

- Study “Z-bosons”, “Photons”, and “Jets” and compare with each other and with PYTHIA Tune A. I need Z Monte-Carlo (PYTHIA Tune A)!

Thanks Ken and Anwar!

PY Tune A Direct Photon!

| \(|\Delta \phi| > 150^\circ\) |
|----------------|---|
| | |

CDF Jet Corrections Meeting | Page 1 of 41
CPH10d Contains Both Photons and Z-bosons!

- **5.3.1 Z mass distribution not perfect!** Plug electron calibration must not be exactly correct? I used only the correction factors provided in 5.3.1.

Beatte taught me how to find Z-bosons!

CDF Data!
The “Toward”, “Transverse”, and “Away” Regions

Each of the three regions have an area $\Delta \eta \Delta \phi = 4\pi/3 = 4.2$.

• Look at the “toward”, “transverse”, and “away” regions as defined by the leading calorimeter jet (JetClu R = 0.7, $|\eta| < 2$).

• Study the charged particles in the region $p_T > 0.5$ GeV/c and $|\eta| < 1$.
The “Toward” and “Away” Regions

- Note that the “toward” region does not always contain all of the leading jet and
 and the “away” regions do not always contain the “away” jet.
“Toward”, Away”, and “Transverse” Regions

- Look at the “toward”, “away”, and “transverse” regions as defined by the leading photon (central photons only |\(\eta| < 1\)).

- **“Back-to-Back”** events are selected to have at least one jet with Jet#1 nearly “back-to-back” with the leading photon (\(\Delta \phi_{1\gamma} > 150^\circ\)).
“Toward”, Away”, and “Transverse” Regions

- Look at the “toward”, “away”, and “transverse” regions as defined by the Z-boson (all Z’s $|\eta| < 6$).

- “Back-to-Back” events are selected to have at least one jet with Jet#1 nearly “back-to-back” with the Z-boson ($\Delta \phi_{1Z} > 150^\circ$).
Direct Photon Production: PYTHIA Tune A

• Match the generated direct photon (before CDFSIM) with the leading photon (after CDFSIM) using R = 0.2 cone.

• For pho1PT > 25 GeV about 90% of the observed leading photons have a direct photon within R = 0.2 cone!
Photon Selection Bias: PYTHIA Tune A

- Shows the $\Delta\phi$ dependence of the charged particle density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ relative to the leading photon (rotated to 270°) for $P_{T}(\text{pho#1}) > 30$ GeV.

- The photon isolation cuts produce a “photon selection bias”. There are less charged particles in the “toward” region in the “matched” events!
Photon Selection Bias: PYTHIA Tune A

- Shows the $\Delta \phi$ dependence of the charged particle density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ relative to the leading photon (rotated to 270°) for $P_T(\text{pho#1}) > 30$ GeV

- The photon isolation cuts produce a “photon selection bias”. There are less charged particles in the “toward” region in the “matched” events!
Photon Selection Bias: PYTHIA Tune A

- Generator level study showing the “true” average charged particle density ($p_T > 0.5$ GeV/c, $|\eta| < 1$) with the “matched” densities.

- The photon isolation cuts produce a “photon selection bias”. There are less charged particles in the “toward” region in the “matched” events!
Photon Energy Resolution: PYTHIA Tune A

- The observed “matched” photons (after CDFSIM) have less p_T than the “true” generated direct photons.

- This is presumably due to energy resolution and a steeply falling p_T spectrum!
Charged Particle Density: “Jet”, “Photon”, and “Z”

Jet data vs photon data!

Jet data vs Z-boson data!

- (left) Compares the $\Delta \phi$ dependence of the particle density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) with “leading jet” events ($30 < E_T(\text{jet#1}) < 70$ GeV).

- (right) Compares the $\Delta \phi$ dependence of the particle density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “Z-boson” events ($P_T(Z) > 30$ GeV) with “leading jet” events ($30 < E_T(\text{jet#1}) < 70$ GeV).
Charged Particle Density: “Jet”, “Photon”, and “Z”

Jet data vs photon data!

Jet data vs Z-boson data!

• (left) Compares the \(\Delta \phi \) dependence of the particle density, \(dN/d\eta d\phi \), for charged particles in the range \(p_T > 0.5 \text{ GeV/c} \) and \(|\eta| < 1 \) for “leading photon” events \((P_T(\text{pho#1}) > 30 \text{ GeV}) \) with “leading jet” events \((30 < E_T(\text{jet#1}) < 70 \text{ GeV}) \).

• (right) Compares the \(\Delta \phi \) dependence of the particle density, \(dN/d\eta d\phi \), for charged particles in the range \(p_T > 0.5 \text{ GeV/c} \) and \(|\eta| < 1 \) for “Z-boson” events \((P_T(Z) > 30 \text{ GeV}) \) with “leading jet” events \((30 < E_T(\text{jet#1}) < 70 \text{ GeV}) \).
Charged Particle Density: Photon vs Z-boson

- Comparress the $\Delta\phi$ dependence of the charged particle density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) with Z-boson events ($P_T(Z) > 30$ GeV/c).

- There is also a “bump” in the direction of the Z-boson?
Charged Particle Density: Photon vs Z-boson

- Comparess the $\Delta\phi$ dependence of the charged particle density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) with Z-boson events ($P_T(Z) > 30$ GeV/c).

- There is also a “bump” in the direction of the Z-boson?
Charged PTsum Density: “Jet”, “Photon”, and “Z”

Jet data vs photon data!

Jet data vs Z-boson data!

• *(left)* Compares the $\Delta \phi$ dependence of the *scalar* PTsum density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “leading photon” events ($P_T(pho#1) > 30$ GeV) with “leading jet” events ($30 < E_T(jet#1) < 70$ GeV).

• *(right)* Compares the $\Delta \phi$ dependence of the *scalar* PTsum density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “Z-boson” events ($P_T(Z) > 30$ GeV) with “leading jet” events ($30 < E_T(jet#1) < 70$ GeV).
Charged PTsum Density: “Jet”, “Photon”, and “Z”

- *(left)* Compares the $\Delta \phi$ dependence of the *scalar* PTsum density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) with “leadig jet” events ($30 < E_T(\text{jet#1}) < 70$ GeV).

- *(right)* Compares the $\Delta \phi$ dependence of the *scalar* PTsum density, $dN/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “Z-boson” events ($P_T(Z) > 30$ GeV) with “leadig jet” events ($30 < E_T(\text{jet#1}) < 70$ GeV).
Charged PTsum Density: Photon+Jet vs Z+Jet

• Shows the $\Delta \phi$ dependence of the *scalar* PTsum density, $dP_T/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “leading photon” events ($P_T(\text{pho}\#1) > 30$ GeV) and Z-boson events ($P_T(Z) > 30$ GeV/c).

• There is also a “bump” in the direction of the Z-boson?
Charged PTsum Density: Photon+Jet vs Z+Jet

- Shows the $\Delta\phi$ dependence of the *scalar* PTsum density, $d\text{PT}/d\eta d\phi$, for charged particles in the range $p_T > 0.5$ GeV/c and $|\eta| < 1$ for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) and Z-boson events ($P_T(Z) > 30$ GeV/c).

- There is also a “bump” in the direction of the Z-boson?
Photon Charged Particle Density: PY Tune A vs Data

- Shows the $\Delta \phi$ dependence of the particle density, $dN/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) compared with PYTHIA Tune A (after CDFSIM).

- The direct photon Monte-Carlo cannot reproduce the “bump” in the direction of the leading photon! The “bump” must be background!
Photon Charged Particle Density: PY Tune A vs Data

- Shows the $\Delta \phi$ dependence of the particle density, $dN/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading photon” events ($P_T(\text{pho}#1) > 30$ GeV) compared with PYTHIA Tune A (after CDFSIM).

- The direct photon Monte-Carlo cannot reproduce the “bump” in the direction of the leading photon! The “bump” must be background!
Charged Particle Density: PY Tune A vs Data

• **(left)** Shows the $\Delta \phi$ dependence of the charged particle density, $dN/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading photon” events ($P_T(\text{pho}\#1) > 30$ GeV) compared with PYTHIA Tune A (after CDFSIM).

• **(right)** Shows the $\Delta \phi$ dependence of the charged particle density, $dN/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading jet” events ($30 < E_T(\text{jet}\#1) < 70$ GeV) compared with PYTHIA Tune A (after CDFSIM).
Charged Particle Density: PY Tune A vs Data

- (left) Shows the Δφ dependence of the charged particle density, dN/dηdφ, for charged particles (p_T > 0.5 GeV/c, |η| < 1) for “leading photon” events (P_T(pho#1) > 30 GeV) compared with PYTHIA Tune A (after CDFSIM).

- (right) Shows the Δφ dependence of the charged particle density, dN/dηdφ, for charged particles (p_T > 0.5 GeV/c, |η| < 1) for “leading jet” events (30 < E_T(jet#1) < 70 GeV) compared with PYTHIA Tune A (after CDFSIM).
Photon PTsum Particle Density: PY Tune A vs Data

- Shows the $\Delta\phi$ dependence of the *scalar* PTsum density, $dPT/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading photon” events ($P_T(\text{pho}\#1) > 30$ GeV) compared with PYTHIA Tune A (after CDFSIM).

- This is not very good agreement! I do not yet understand why the agreement in the “toward” and “transverse” regions is not better??
Photon PTsum Particle Density: PY Tune A vs Data

- Shows the $\Delta \phi$ dependence of the scalar PTsum density, $dPT/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) compared with PYTHIA Tune A (after CDFSIM).

- This is not very good agreement! I do not yet understand why the agreement in the “toward” and “transverse” regions is not better??
PTsum Particle Density: PY Tune A vs Data

• (left) Shows the $\Delta \phi$ dependence of the charged PTsum density, $dP_T/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading photon” events ($P_T(\text{pho#1}) > 30$ GeV) compared with PYTHIA Tune A (after CDFSIM).

• (right) Shows the $\Delta \phi$ dependence of the charged PTsum density, $dP_T/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading jet” events ($30 < E_T(\text{jet#1}) < 70$ GeV) compared with PYTHIA Tune A (after CDFSIM).
PTsum Particle Density: PY Tune A vs Data

- **(left)** Shows the $\Delta \phi$ dependence of the charged PTsum density, $dP_T/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading photon” events ($P_T(pho#1) > 30$ GeV) compared with PYTHIA Tune A (after CDFSIM).

- **(right)** Shows the $\Delta \phi$ dependence of the charged PTsum density, $dP_T/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) for “leading jet” events ($30 < E_T(jet#1) < 70$ GeV) compared with PYTHIA Tune A (after CDFSIM).
Photons Particle Densities: PY Tune A vs Data

- Shows the average charged particle density, $dN/d\eta d\phi$, and PTsum density, $dPT/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) in the “toward”, “away”, and “transverse” regions versus P_T(pho#1) for “leading photon” events compared with PYTHIA Tune A (after CDFSIM).

- This is not very good agreement! I do not yet understand why the agreement in the “toward” and “transverse” regions is not better??
Charged Particle Densities: PY Tune A vs Data

- (left) Shows the average density, $dN/d\eta d\phi$, charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) in the “toward”, “away”, and “transverse” regions versus $P_T(\text{pho#1})$ for “leading photon” events compared with PYTHIA Tune A (after CDFSIM).

- (right) Shows the average density, $dN/d\eta d\phi$, charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) in the “toward”, “away”, and “transverse” regions versus $E_T(\text{jet#1})$ for “leading jet” events compared with PYTHIA Tune A (after CDFSIM).
Charged PTsum Densities: PY Tune A vs Data

- **(left)** Shows the average PTsum density, $dPT/d\eta d\phi$, charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) in the “toward”, “away”, and “transverse” regions versus $P_T(\text{pho}\#1)$ for “leading photon” events compared with PYTHIA Tune A (after CDFSIM).

- **(right)** Shows the average PTsum density, $dPT/d\eta d\phi$, charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) in the “toward”, “away”, and “transverse” regions versus $E_T(\text{jet}\#1)$ for “leading jet” events compared with PYTHIA Tune A (after CDFSIM).
“Transverse” PTsum Particle Density: PY Tune A vs Data

- (left) Shows the average PTsum density, dPT/d\(\eta d\phi\), for charged particles (p_T > 0.5 GeV/c, |\(\eta\)| < 1) in the “toward”, and “transverse” regions versus P_T(\(\text{pho#1}\)) for “leading photon” events compared with PYTHIA Tune A (after CDFSIM).

- (right) Shows the average PTsum density, dPT/d\(\eta d\phi\), for charged particles (p_T > 0.5 GeV/c, |\(\eta\)| < 1) in the “toward”, and “transverse” regions versus E_T(\(\text{jet#1}\)) for “leading jet” events compared with PYTHIA Tune A (after CDFSIM).
“Pile-Up” and the Charged Particle Densities

- Shows the average charged particle density, $dN/d\eta d\phi$, and PTsum density, $dPT/d\eta d\phi$, for charged particles ($p_T > 0.5$ GeV/c, $|\eta| < 1$) in the “toward”, and “transverse” regions versus $PT(\text{pho#1})$ for all “leading photon” events compared with “leading photon” events with ≤ 1 z-vertex (class 12 or higher).

- Because I am making “tight” track cuts on the primary vertex “pile-up” effects are negligible for the charged particles! But “pile-up” may affect the jet energies!
Photon-Jet Balancing

- Shows the average ratio of $E_T(jet#1)/P_T(\text{pho#1})$ versus $P_T(\text{pho#1})$ for “back-to-back” events with $E_T(jet#2) < 10 \text{ GeV}$, 5 GeV, and 3 GeV for JetClu R = 0.7 with no “jet corrections” and no vertex cuts.

- For “jet energy corrections” need the ratio of $P_T(\text{pho#1})/ E_T(jet#1)$ versus $E_T(jet#1)$ (i.e. bins of $E_T(jet#1)$ instead of bins of $P_T(\text{pho#1})$.

- Why am I using $E_T(jet#1)$ and not $P_T(jet#1)$?
Photon-Jet Balancing

- Shows the average ratio of $E_T(jet\#1)/P_T(pho\#1)$ versus $P_T(pho\#1)$ for “back-to-back” events with $E_T(jet\#2) < 10$ GeV, 5 GeV, and 3 GeV for JetClu $R = 0.7$ with no “jet corrections” and no vertex cuts.

- For “jet energy corrections” need the ratio of $P_T(pho\#1)/ E_T(jet\#1)$ versus $E_T(jet\#1)$ (i.e. bins of $E_T(jet\#1)$ instead of bins of $P_T(pho\#1)$.

- Why am I using $E_T(jet\#1)$ and not $P_T(jet\#1)$?
Photon-Jet Balancing

- **(left)** Shows the average ratio of E_T(jet#1)/P_T(pho#1) versus P_T(pho#1) for “back-to-back” events with E_T(jet#2) < 10 GeV, 5 GeV, and 3 GeV for JetClu R = 0.7 with no “jet corrections” and no vertex cuts.

- **(right)** Shows the average ratio of P_T(pho#1)/E_T(jet#1) versus E_T(jet#1) for “back-to-back” events with E_T(jet#2) < 10 GeV, 5 GeV, and 3 GeV for JetClu R = 0.7 with P_T(pho#1) > 25 GeV and no “jet corrections” and no vertex cuts.

- Why am I using E_T(jet#1) and not P_T(jet#1)?
Z-Jet Balancing

- (left) Shows the average ratio of $E_T(\text{jet#1})/P_T(Z)$ versus $P_T(Z)$ for “back-to-back” events with $E_T(\text{jet#2}) < 10 \text{ GeV}$, 5 GeV, and 3 GeV for JetClu $R = 0.7$ with no “jet corrections” and no vertex cuts.

- (right) Shows the average ratio of $P_T(Z)/E_T(\text{jet#1})$ versus $E_T(\text{jet#1})$ for “back-to-back” events with $E_T(\text{jet#2}) < 10 \text{ GeV}$, 5 GeV, and 3 GeV for JetClu $R = 0.7$ with no “jet corrections” and no vertex cuts.

- Why am I using $E_T(\text{jet#1})$ and not $P_T(\text{jet#1})$?
Photon-Jet Balancing versus Z-Jet Balancing

- (left) Compares the average ratio of $E_T^{\text{jet#1}}/P_T(Z)$ versus $P_T(Z)$ for “back-to-back” Z events with $E_T^{\text{jet#2}} < 5$ GeV for JetClu $R = 0.7$ with the average ratio of $E_T^{\text{jet#1}}/P_T(\text{pho#1})$ versus $P_T(\text{pho#1})$ for “back-to-back” photon events with $E_T^{\text{jet#2}} < 5$ GeV for JetClu $R = 0.7$ with no “jet corrections” and no vertex cuts.

- (right) Compares the average ratio of $P_T(Z)/ E_T^{\text{jet#1}}$ with $P_T(\text{pho#1})/E_T(\text{jet#1})$ versus $E_T^{\text{jet#1}}$ for “back-to-back” Z and photon events with $E_T^{\text{jet#2}} < 5$ GeV for JetClu $R = 0.7$ with no “jet corrections” and no vertex cuts.

Why are Z and Photon different??
“Pile-Up” Effects in Photon-Jet Balancing

- **(left)** Compares the average ratio of $E_T(\text{jet#1})/P_T(\text{pho#1})$ versus $P_T(\text{pho#1})$ for all “back-to-back” photon events with $E_T(\text{jet#2}) < 5$ GeV for JetClu R = 0.7 with events selected to have no “pile-up” (*i.e.*, number of z-vertices ≤ 1).

- **(right)** Compares the average ratio of $P_T(\text{pho#1})/E_T(\text{jet#1})$ versus $E_T(\text{jet#1})$ for all “back-to-back” photon events with $E_T(\text{jet#2}) < 5$ GeV for JetClu R = 0.7 with events selected to have no “pile-up” (*i.e.*, number of z-vertices ≤ 1).
Jet#1 PseudoRapidity: Photon vs Z-boson

- Shows the “away-side” jet#1 pseudorapidity distribution for “back-to-back” photon events with P_T(pho#1) > 30 GeV and “back-to-back” Z-boson events with P_T(Z) > 30 GeV with E_T(jet#2) < 5 GeV for JetClu R = 0.7 with no “jet corrections” and no vertex cuts.

- Differences between photon and Z jet balancing not due to η!
Leading Photon P_T Distribution: PY Tune A vs Data

- Shows the leading photon P_T distribution compared with PYTHIA Tune A (after CDFSIM).

- Unlike the inclusive “jet” cross section the data does not rise above the theory at high P_T!
*** The Plan ***

- I need to understand why Z-jet and Photon-jet balancing is different in the data!

- I need to understand why PYTHIA Tune A fits the “leading jet” events better than the “leading photon” events! The “photons” are not pure. I need to simulate the “background”.

- I will look at Ken’s HERWIG photon events.

- I need 5.3.1 Z-jet and jet-jet PYTHIA Tune A and HERWIG Monte-Carlo events! We need more Monte-Carlo and more Stntuples!

- I will look at R = 0.4 conesize and Mid-Point Algorithm.

- I will look at photon-jet balancing at the MC generator level.

- I will compare PYTHIA Tune A and HERWIG photon-jet balancing with the data.