

Good Runs

 $|z_0| < 60 \text{ cm}$

Data Selection

	Anwar's New Stntuples	JET20	JET50	JET70	JET100
	Total Events	7,388,639	1,844,407	826,597	1,052,530
	Good Events (Rob's WEB)	5,185,515	1,397,771	642,289	822,466
	Met Cut (MetSig < 5, sumET < 2 TeV)	5,177,984	1,370,267	607,794	690,242
	1 ZVTX z < 60 cm	3,038,879	793,145	350,146	391,034
	JetClu (η(jet) < 2 , R = 0.7)	2,422,404	728,816	336,238	386,991
	JetClu (η(jet) < 0.7 , R = 0.7)	1,118,787	379,443	188,441	240,296
	ChgJet (P _T > 0.5 GeV, η < 2 , R = 0.7)	3,018,847	790,136	349,135	390,276

Event Selection

Bad Stntuples Removed

MetSig < 5 sumET < 2 TeV One and only one Z-vertex

> Form charged particle jets (R = 0.7) as we did our Run 1 analysis

 $\frac{\text{Calorimeter Jet Selection}}{\text{JetClu } (R = 0.7)}$ $|\eta(\text{jet})| < 2 \text{ or } |\eta(\text{jet})| < 0.7$

Form "weighted" histograms using P_T(hard) so that I can use all 3,363,400 generated events! Need another run with PT(min) = 125 GeV/c!

Shows the data on the average number of charged particles within the leading charged particle jet (|η|<1, P_T>0.5 GeV, R = 0.7) as a function of the transverse momentum of the leading charged particle jet from Run 1.

 $\Delta \phi$ relative to the leading charged particle correlations in the azimuthal angle $\Delta \phi$ relative to the leading charged particle jet.

- **Define** $|\Delta \phi| < 60^{\circ}$ as "Toward", $60^{\circ} < |\Delta \phi| < 120^{\circ}$ as "Transverse", and $|\Delta \phi| > 120^{\circ}$ as "Away".
- All three regions have the same size in η - ϕ space, $\Delta \eta x \Delta \phi = 2x 120^{\circ} = 4\pi/3$.

CDF-QCD PreBlessing March 21, 2003

CDF-QCD PreBlessing March 21, 2003 Page 7

Shows the data on the average "transverse" charge particle density (|η|<1, P_T>0.5 GeV) as a function of the transverse momentum of the leading charged particle jet from Run 1.

CDF-QCD PreBlessing March 21, 2003

Shows the data on the average "transverse" charged PTsum density (|η|<1, P_T>0.5 GeV) as a function of the transverse momentum of the leading charged particle jet from Run 1.

CDF-QCD PreBlessing March 21, 2003

Compares the average "transverse" charge particle density (|η|<1, P_T>0.5 GeV) versus P_T(charged jet#1) with the P_T distribution of the "transverse" density, dN_{chg}/dηdφdP_T. Shows how the "transverse" charge particle density is distributed in P_T.

March 21, 2003

Compares the average "transverse" charge particle density ($|\eta| < 1$, $P_T > 0.5$ GeV) versus P_T (charged jet#1) with the P_T distribution of the "transverse" density, $dN_{chg}/d\eta d\phi dP_T$. Shows how the "transverse" charge particle density is distributed in P_T .

CDF-QCD PreBlessing March 21, 2003

JetClu jet.

- **Define** $|\Delta \phi| < 60^{\circ}$ as "Toward", $60^{\circ} < |\Delta \phi| < 120^{\circ}$ as "Transverse", and $|\Delta \phi| > 120^{\circ}$ as "Away".
- All three regions have the same size in η - ϕ space, $\Delta\eta x \Delta \phi = 2x 120^\circ = 4\pi/3$.

CDF-QCD PreBlessing March 21, 2003 Rick Field

Page 18

Shows the data on the average "transverse" charge particle density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2 compared with the predictions of PYTHIA Tune A.

- Shows the data on the average "transverse" charge particle density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2 compared with the predictions of PYTHIA Tune A.</p>
- Compares the "transverse" region of the leading chgjet with the "transverse" region of the leading JetClu jet.

Shows the data on the average "transverse" charged PTsum density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2 compared with the predictions of PYTHIA Tune A.

- Shows the data on the average "transverse" charged PTsum density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2 compared with the predictions of PYTHIA Tune A.
- Compares the "transverse" region of the leading chgjet with the "transverse" region of the leading JetClu jet.

Compares the average "transverse" charge particle density ($|\eta| < 1$, $P_T > 0.5$ GeV) versus E_T (jet#1) with the P_T distribution of the "transverse" density, $dN_{chg}/d\eta d\phi dP_T$. Shows how the "transverse" charge particle density is distributed in P_T .

CDF-QCD PreBlessing March 21, 2003

- There is excellent agreement between Run 1 ap run 2 for charged particles. The "underlying event" is the same in Run 2 as "Run 1 but now we can study the evolution out to much higher energies!
- PYTHIA Tune A does a good job of describing the "underlying event" in the Run 2 data for both charged particle jets and calorimeter jets. However, I still need to study the distributions in the "transverse" region.
- With the new Min-Bias Stntuples (thanks Anwar!) so I can follow the evolution of charged particle jets (and calorimeter jets) to lower energies.
- Lots more to come including MAX/MIN "transverse" and MAX/MIN "cones" and "transverse" P_T distributions.

- PYTHIA Tune A (CTEQ5L) does not agree with the shape of the calorimeter jet crosssection and it predicts a larger charged particle fraction (*i.e.* larger charged PTsum) within the leading calorimeter jet than in the Run 2 data. I still need to study the distributions!
- PYTHIA Tune A produces too many charged particles within the leading calorimeter jet and within the leading chgjet. (I tuned the "underlying event" not the jet fragmentation!).
- Much more to come, but we need another PYTHIA Tune A run with P_T(min) = 125 GeV/c so we can compare at high ET.

Blessing in 4 weeks (QCD meeting on April 18). CDF Note by Monday April 1 (3 weeks before blessing).