

## **"Jet" Evolution and the "Underlying Event" in Run 2**



#### **Outline of Talk**

- Study the evolution of "charged particle jets" and the "underlying event" and compare with Run I.
- Study the evolution of "calorimeter jets" and the "underlying event" and compare with the "charged particle jet" analysis.
- \* "Charged particle jets" versus "calorimeter jets". Study the relationship between "chgjets" and "JetClu" jets.
- Study some of the characteristics of the leading "charged particle jet" and the leading "calorimeter jet".





CDF-QCD Blessing April 18, 2003



# "Jet" Evolution and the

"Underlying Event" in

A

Look at the charged particle correlation relative to the leading "charged particle jet".

#### **Outline of Talk**

- Study the evolution of "charged particle jets" the "underlying event" and compare with Run
- Study the evolution of "calorimeter jets" and the "underlying event" and compare with the "charged particle jet" analysis.
- "Charged particle jets" versus "calorimeter jets". Study the relationship between "chgjets" and "JetClu" jets.
- Study some of the characteristics of the learning "charged particle jet" and the leading "calorimeter jet".

Look at the charged particle correlation relative to the leading "calorimeter jet".

Look correlation between the leading "charged particle jet" and "calorimeter jets".

> Look charged particles within the leading "charged particle jet" and within the leading "calorimeter jet".

CDF-QCD Blessing April 18, 2003





# **Data Selection**



| ]                                                       | Anwar's Stntuples                                         | Min-Bias  | JET20     | JET50     | JET70                | JET100    |
|---------------------------------------------------------|-----------------------------------------------------------|-----------|-----------|-----------|----------------------|-----------|
| Event SelectionGood RunsBad Stntuples RemovedMetSig < 5 | Total Events                                              | 3,716,068 | 7,388,639 | 1,844,407 | 826,597              | 1,052,530 |
|                                                         | Good Events (Rob's WEB)                                   | 3,094,114 | 5,185,515 | 1,397,771 | 642,289              | 822,466   |
|                                                         | MetSig < 5, sumET < 1.5 TeV                               | 3,093,888 | 5,177,984 | 1,370,267 | 607,794              | 690,239   |
|                                                         | 0 or 1 ZVTX  z  < 60 cm                                   | 2,596,553 | 3,127,001 | 802,003   | 352,820              | 393,118   |
|                                                         | JetClu ( η(jet) < 2 , R = 0.7)                            | 587,154   | 2,473,013 | 735,893   | 338,668              | 389,006   |
|                                                         | JetClu ( η(jet) < 0.7 , R = 0.7)                          | 270,725   | 1,135,226 | 381,934   | 189,439              | 241,306   |
| Same as our                                             | ChgJet (P <sub>T</sub> > 0.5 GeV,  η < 2 , R = 0.7)       | 2,114,276 | 3,079,553 | 796,977   | 351,294              | 391,886   |
| Same as our<br>Run 1                                    | ChgJet (P <sub>T</sub> > 0.5 GeV, $ \eta < 2 $ , R = 0.7) | 2,114,276 | 3,079,553 | 796,977   | <mark>351,294</mark> | 391,886   |



Form charged particle jets (R = 0.7) as we did our Run 1 analysis

 $\frac{\text{Calorimeter Jet Selection}}{\text{JetClu } (R = 0.7)}$  $|\eta(\text{jet})| < 2 \text{ or } |\eta(\text{jet})| < 0.7$ 

CDF-QCD Blessing April 18, 2003



 $\Delta \phi$  relative to the leading charged particle correlations in the azimuthal angle  $\Delta \phi$  relative to the leading charged particle jet.

- **Define**  $|\Delta \phi| < 60^{\circ}$  as "Toward",  $60^{\circ} < |\Delta \phi| < 120^{\circ}$  as "Transverse", and  $|\Delta \phi| > 120^{\circ}$  as "Away".
- All three regions have the same size in  $\eta$ - $\phi$  space,  $\Delta \eta x \Delta \phi = 2x 120^{\circ} = 4\pi/3$ .

CDF-QCD Blessing April 18, 2003



Shows the data on the average "transverse" charge particle density (|η|<1, P<sub>T</sub>>0.5 GeV) as a function of the transverse momentum of the leading charged particle jet from Run 1.



- Shows the data on the average "transverse" charge particle density (|η|<1, P<sub>T</sub>>0.5 GeV) as a function of the transverse momentum of the leading charged particle jet from Run 1.
- Compares the Run 2 data (Min-Bias, JET20, JET50, JET70, JET100) with Run 1. The errors on the (*uncorrected*) Run 2 data now include both statistical and correlated systematic uncertainties.





Shows the data on the average "transverse" charged PTsum density (|η|<1, P<sub>T</sub>>0.5 GeV) as a function of the transverse momentum of the leading charged particle jet from Run 1.



- Shows the data on the average "transverse" charged PTsum density (|η|<1, P<sub>T</sub>>0.5 GeV) as a function of the transverse momentum of the leading charged particle jet from Run 1.
- Compares the Run 2 data (Min-Bias, JET20, JET50, JET70, JET100) with Run 1. The errors on the (*uncorrected*) Run 2 data now include both statistical and correlated systematic uncertainties.



Rick Field

Page 11



Compares the average "transverse" charge particle density with the average "Min-Bias" charge particle density (|η|<1, P<sub>T</sub>>0.5 GeV). Shows how the "transverse" charge particle density and the Min-Bias charge particle density is distributed in P<sub>T</sub>.

CDF-QCD Blessing April 18, 2003



Compares the average "transverse" charge particle density ( $|\eta| < 1$ ,  $P_T > 0.5$  GeV) versus  $P_T$ (charged jet#1) and the  $P_T$  distribution of the "transverse" and "Min-Bias" densities with the QCD Monte-Carlo predictions of a tuned version of PYTHIA 6.206 ( $P_T$ (hard) > 0, CTEQ5L, Set A). Describes "Min-Bias" collisions! Describes the "underlying event"! *CDF-QCD Blessing April 18, 2003* 





Compares the average "transverse" charge particle density ( $|\eta| < 1$ ,  $P_T > 0.5$  GeV) versus  $P_T$ (charged jet#1) with the  $P_T$  distribution of the "transverse" density,  $dN_{chg}/d\eta d\phi dP_T$ . Shows how the "transverse" charge particle density is distributed in  $P_T$ .

CDF-QCD Blessing April 18, 2003







JetClu jet.

- **Define**  $|\Delta \phi| < 60^{\circ}$  as "Toward",  $60^{\circ} < |\Delta \phi| < 120^{\circ}$  as "Transverse", and  $|\Delta \phi| > 120^{\circ}$  as "Away".
- All three regions have the same size in  $\eta$ - $\phi$  space,  $\Delta \eta x \Delta \phi = 2x 120^\circ = 4\pi/3$ .

CDF-QCD Blessing April 18, 2003



Shows the data on the average "transverse" charge particle density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2, compared with PYTHIA Tune A.</li>



- Shows the data on the average "transverse" charge particle density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2, compared with PYTHIA Tune A.</p>
- Compares the "transverse" region of the leading "charged particle jet", chgjet#1, with the "transverse" region of the leading "calorimeter jet" (JetClu R = 0.7), jet#1.



Shows the data on the average "transverse" charged PTsum density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2, compared with PYTHIA Tune A.</li>



- Shows the data on the average "transverse" charged PTsum density (|η|<1, PT>0.5 GeV) as a function of the transverse energy of the leading JetClu jet (R = 0.7, |η(jet)| < 2) from Run 2, compared with PYTHIA Tune A.</li>
- Compares the "transverse" region of the leading "charged particle jet", chgjet#1, with the "transverse" region of the leading "calorimeter jet" (JetClu R = 0.7), jet#1.



Compares the average "transverse" charge particle density ( $|\eta| < 1$ ,  $P_T > 0.5$  GeV) versus  $E_T$ (jet#1) with the  $P_T$  distribution of the "transverse" density,  $dN_{chg}/d\eta d\phi dP_T$ . Shows how the "transverse" charge particle density is distributed in  $P_T$ .

CDF-QCD Blessing April 18, 2003



## **The Leading "Charged Particle" Jet**



Shows the data on the average number of charged particles within the leading "charged particle jet" (|η|<1, P<sub>T</sub>>0.5 GeV, R = 0.7) as a function of the transverse momentum of the leading "charged particle jet" from Run 1.





Compares the Run 2 data (Min-Bias, JET20, JET50, JET70, JET100) with Run 1. The errors on the (*uncorrected*) Run 2 data now include both statistical and correlated systematic uncertainties.







Compares the number of charged particles within the leading "charged particle jet", chgjet#1, with the number of charged particles within the leading "calorimeter jet" (JetClu R = 0.7), jet#1.



- Shows charged particle multiplicity distribution (|η|<1, P<sub>T</sub>>0.5 GeV/c) within the leading "charged particle jet" and in the "transverse" region as defined by the leading "charged particle jet" for the range 30 < P<sub>T</sub>(chgjet#1) < 70 GeV/c compared with PYTHIA Tune A.
- Shows charged particle multiplicity distribution (|η|<1, P<sub>T</sub>>0.5 GeV/c) within the leading "calorimeter jet" (JetClu, R = 0.7, |η(jet)| < 0.7) and in the "transverse" regions as defined by the leading "calorimeter jet" (JetClu, R = 0.7, |η(jet)| < 2) for the range 30 < E<sub>T</sub>(jet#1) < 70 GeV compared with PYTHIA Tune A.</li>



1.0E-01

1.0F-02

1.0E-03

Shows the transverse momentum distribution of charged particles  $(|\eta| < 1)$  within the leading "charged particle jet" compared with **PYTHIA Tune A.** The plot shows  $dN_{chg}/dz$  with  $z = P_T/P_T(chgjet#1)$ for the range  $30 < P_T(chgjet#1) < 70$ GeV/c.

0.4

z = PT/PT(chgjet#1)

0.6

0.8

1.0

R = 0.7 30 < PT(chgjet#1) < 70 GeV

|η|<1.0 PT>0.5 GeV/c

0.2

0.2 0.6 0.8 1.0 0.0 0.4 1.2 z = PT/ET(Jet#1) Shows the transverse momentum distribution of charged particles ( $|\eta| < 1$ ) within the leading "calorimeter jet"  $(JetClu, R = 0.7, |\eta(jet)| < 0.7)$  compared with PYTHIA Tune A. The plot shows  $dN_{chg}/dz$  with  $z = P_T/E_T(jet\#1)$  for the range  $30 < E_T(jet#1) < 70$  GeV.

JetClu R = 0.7 30 < ET(jet#1) < 70 GeV

Charged Particles (|n|<1.0, PT>0.5 GeV/c)

CDF-OCD Blessing April 18, 2003

0.1

0.0



 Shows average charged PTsum fraction, PTsum/E<sub>T</sub>(jet#1), and the average charged PTmax fraction, PTmax/E<sub>T</sub>(jet#1), within the leading "calorimeter jet" (JetClu, R = 0.7, |η(jet)| < 0.7) compared with PYTHIA Tune A.

Shows distribution of the charged PTsum fraction, z = PTsum/E<sub>T</sub>(jet#1), and the distribution of charged PTmax fraction, z = PTmax/E<sub>T</sub>(jet#1), within the leading "calorimeter jet" (JetClu, R = 0.7, |η(jet)| < 0.7) for the range 95 < E<sub>T</sub>(jet#1) < 130 GeV compared with PYTHIA Tune A.</li>